Question

Sketch the singular set Σ and the discriminant $\Delta = F(\Sigma)$ for each of the following maps $F: \mathbb{R}^2 \to \mathbb{R}^2$:

(i)
$$F(x_1, x_2) = (x_1, x_1^2 + x_2^2)$$

(ii)
$$F(x_1, x_2) = (x_1, x_1^3 - x_1 + x_2^2)$$

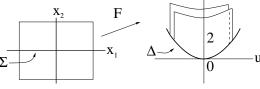
(iii)
$$F(x_1, x_2) = (x_1^2 - x_2^2, 2x_1x_2)$$

(iv)
$$F(x_1, x_2) = (x_1, x_2^4 + x_1 x_2^2)$$
.

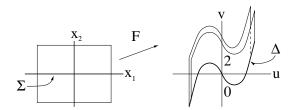
In each case label the various connected regions of the complement of Δ in ${\bf R}^2$ according to the number of points of $F^{-1}(q)$ for q in each region. Answer

(i)
$$DF(x_1, x_2) = \begin{pmatrix} 1 & 0 \\ 2x_1 & 2x_2 \end{pmatrix}$$
.
 $\det = 2x_2, \Rightarrow \Sigma \text{ is: } x_2 = 0$.
 $F(x_1, 0) = (x_1, x_1^2) \Rightarrow \Delta \text{ is: } v = u^2$.

$$X_2$$
 F 2



(ii)
$$DF(x_1, x_2) = \begin{pmatrix} 1 & 0 \\ 3x_1^2 - 1 & 2x_2 \end{pmatrix}$$
.
 $\det = 2x_2, \Rightarrow \Sigma \text{ is: } x_2 = 0.$
 $F(x_1, 0) = (x_1, x_1^3 - 1) \Rightarrow \Delta \text{ is: } v = u^3 - u.$

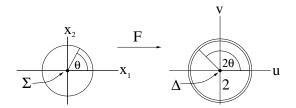


(iii)
$$DF(x_1, x_2) = \begin{pmatrix} 2x_1 & -2x_2 \\ 2x_2 & 2x_1 \end{pmatrix}$$
.
 $\mathbf{det} = 4(x_1^2 + x_2^2, \Rightarrow \Sigma \text{ is } (0, 0) \text{ only.}$
 $\Delta = \{F(0, 0)\} = (0, 0) \text{ only.}$

In polar coordinates $(x_1, x_2) = r(\cos \theta, \sin \theta)$ we see

$$(u, v) = r^2 \cos 2\theta, \sin 2\theta$$

i.e. $F(x) = x^2$ in complex notation.



Angles are doubled, radii are squared.

(iv)
$$DF(x_1, x_2) = \begin{pmatrix} 1 & 0 \\ x_2^2 & 4x_2^3 + 2x_1x_2 \end{pmatrix}$$
.

 $\det = 4x_2^3 + 2x_1x_2, \Rightarrow \Sigma \text{ is: } x_2 = 0 \text{ and } x_1 = -2x_2^2.$

 $F(x_1,0)=(x_1,0),\ F(-2x_2^2,x_2)=(-2x_2^2,-x_2^4),\ \text{giving part of the parabola}\ v=-\left(\frac{u}{2}\right)^2\ \text{with}\ u\leq 0.$

