THEORY OF NUMBERS THE FUNDAMENTAL THEOREM OF ARITHMETIC

Theorem Euclids Algorithm Suppose $a>0, b$ are integers. \exists unique q, r such that $b=a q+r$ and $0 \leq r<a$.

Proof (i) Existence
Choose the greatest value of q such that $b-a q \leq 0$ and write $r=b-a q$ so $r>0$. If $r \geq a$ then $b-a(q+1) \geq 0$ which contradicts the definition of q.
(ii) Uniqueness

Suppose $\exists q^{\prime}, r^{\prime} q^{\prime \prime}, r^{\prime \prime}$ with $q^{\prime}>q^{\prime \prime}$. Then $a \leq a\left(q^{\prime}-q^{\prime \prime}\right)=r^{\prime \prime}-r^{\prime}<$ a which gives us a contradiction.

Definition A modulus of integers is a set S of integers such that
(i) S contains a non-zero element
(ii) $m \in S, n \in S \Rightarrow m-n \in S$

Theorem Every modulus of integers is equivalent to the set of all integer multiples of some natural number.

Proof Let k be the least positive element in S. Let T be the set of all integral multiples of k.
(i) $T \subset S$

$$
\begin{aligned}
k \in S & \Rightarrow k-k=0 \in S \\
& \Rightarrow 0-k=-k \in S \\
& \Rightarrow k-(-k)=2 k \in S
\end{aligned}
$$

etc. (proof by induction).
(ii) $S \subset T$

Let $x \in S$ By Euclids algorithm $\exists q, r$ such that $x=q k+r 0 \leq$ $r \leq k, x \in S, q k \in S$ therefore $r \in S$ therefore $r=0$ therefore $x \in T$.

Theorem Suppose a, b are not both zero. \exists a unique natural number d such that
(i) $d|a d| b$
(ii) if $t \mid a$ and $t|b \Rightarrow t| d$
(iii) $\exists x, y$ such that $d=a x+b y$
d is called the highest common factor (H.C.F) of a, b denoted by (a, b).
Proof (1) Existence
Consider the set of all numbers of the form $a x+b y$. This set is a modulus S which has a generator d.
(iii) follows from the definition of $d, a \in S b \in S$ therefore (i) follows. (ii) follows from (iii)
(2) Uniqueness

Suppose d^{\prime}, $d^{\prime \prime}$ satisfy (i) to (iii).

$$
\begin{aligned}
d^{\prime} \mid a \text { and } d^{\prime} \mid b & \Rightarrow d^{\prime} \mid d^{\prime \prime} \\
d^{\prime \prime} \mid a \text { and } d^{\prime \prime} \mid b & \Rightarrow d^{\prime \prime} \mid d^{\prime} \\
& \Rightarrow d^{\prime}=d^{\prime \prime}
\end{aligned}
$$

Corollary Suppose $a_{1} \ldots a_{n}$ are not all zero. \exists a unique $d=\left(a_{1} \ldots a_{n}\right)$ such that
(i) $d\left|a_{1} \ldots d\right| a_{n}$
(ii) $t\left|a_{1} \ldots t\right| a_{n} \Rightarrow t \mid d$
(iii) $\exists x_{1} \ldots x_{n}$ such that $d=a_{1} x_{1}+\ldots+a_{n} x_{n}$

The equation $a_{1} x_{1}+\ldots+{ }_{_} n x_{n}=k$ is soluble $\Leftrightarrow k \mid a$
Theorem Suppose p is prime and $p \mid a b$. Then either $p \mid a$ or $p \mid b$ or both.
Proof Suppose p does not divide a. Then $(p, a)=1$. Hence $\exists x, y$ such that $1=p x+a y$ therefore $b=b p x+a b y$ therefore $p \mid b$.

Fundamental Theorem of arithmetic Every positive integer ≥ 2 is representable as a finite product of positive primes, the representations being unique, apart from order.

Proof Suppose $n=p_{1} p_{2} \ldots p_{r}=q_{1} \ldots q_{s}$ is the smallest n with two such representations. Then $p_{1} \mid q_{j}$ say. $p_{q} \ldots p_{r}=q_{1} \ldots q_{j-1} q_{j+1} \ldots q_{s}$ this is smaller then n. So the result follows.

