THEORY OF NUMBERS

SUMS OF SQUARES

We wish to know which numbers are representable as sums of squares. For two squares

$$
\left(x_{1}^{2}+y_{1}^{2}\right)\left(x_{2}^{2}+y_{2}^{2}\right)=\left(x_{1} x_{2}+y_{1} y_{2}\right)^{2}+\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2}
$$

So the product of two numbers representable is also representable. We then ask what primes are representable.
Now the square of any even number is congruent to $0(\bmod 4)$ and the square of any odd number is $\equiv 1$ (4). So the sum of two squares is congruent to 0 1 or $2 \bmod 4$, so any number $4 m+3$ is not representable.

Theorem (Fermat) Every prime $p \equiv 1$ (4) is representable as the sum of two squares.

Proof $1 \exists x_{0}$ such that $x_{0}^{2}+1 \equiv 0 \bmod p .(-1)$ is a quadratic residue \bmod p therefore $m p=x^{2}+y^{2}$ for some $m\left(x_{0}^{2}+1^{2}-m p\right)$.
Let m be the least positive integer such that $m p=x^{2}+y^{2}$. Then $1 \leq m \leq p$. R.T.P. $m=1$
Assume $m>1, \exists x_{1}, y_{1}$ such that $x \equiv x_{1} \bmod m y \equiv y_{1} \bmod m$.
$\left|x_{1}\right| \leq \frac{1}{2} m\left|y_{1}\right| \leq \frac{1}{2} m$ $x_{1}^{2}+y_{1}^{2} \equiv x^{2}+y^{2}=0 \bmod m$ Therefore $l m=x_{1}^{2}+y_{1}^{2}$ where l is an integer $l=0 \Rightarrow x_{1}^{2}=y_{1}^{2}=0 \Rightarrow x \equiv 0 y \equiv 0 \Rightarrow m|x m| y \Rightarrow m \mid p$ therefore $1 \leq l<m$
For $l m \leq\left(\frac{1}{2} m\right)^{2}+\left(\frac{1}{2} m\right)^{2}=\frac{1}{2} m^{2}<m^{2}$
Now $l p m^{2}=\left(x^{2}+y^{2}\right)\left(x_{1}^{2}+y_{1}^{2}\right)=\left(x x_{1}+y y_{1}\right)^{2}+\left(x y_{1}-x_{1} y\right)^{2}$
Now $x x_{1}+y y_{1} \equiv 0 \bmod m$ and $x y_{1}-x_{1} y \equiv 0 \bmod m$ therefore $l p=u^{2}+v^{2}, v, v$ integers. This is a contradiction therefore $m=1$.

Proof $2 \exists \lambda$ such that $\lambda^{2}+1 \equiv 0 \bmod p$ S.T.P. $\exists(x, y) \neq(0,0)$ such that $y \equiv \lambda x \bmod p x^{2}+y^{2}<2 p$.

Lemma Suppose $\lambda \not \equiv 0 \bmod p$. Suppose e, f are natural numbers such that ef $>p$ then \exists a non-trivial solution x, y of $y \equiv \lambda x \bmod p$ satisfying $|x| \leq e-1|y| \leq f-1$.

Proof Consider the set S of $y-\lambda x$ as x, y run through $0,1, \ldots e-1 ; 0,1, \ldots f-$ y. The number of elements in s is ef $>p$ therefore $\exists y^{\prime}-\lambda x^{\prime} \equiv y^{\prime \prime} \lambda x^{\prime \prime}$
$\bmod p$ such that $\left(x^{\prime}-x^{\prime \prime}\right)^{2}+\left(y^{\prime}-y^{\prime \prime}\right)^{2} \neq 0$ Put $y=y^{\prime}-y^{\prime \prime} ; m x=x^{\prime}-x^{\prime \prime \prime}$ then x and y are the required numbers.
Now apply the lemma with $e=f=\left[p^{\frac{1}{2}}\right]+1>p^{\frac{1}{2}}$ then $e f>p$ and $(e-1)^{2}+(f-1)^{2}=2\left[p^{\frac{1}{2}}\right]^{2}<2 p$.

Theorem A natural number n is representable as the sum of two squares \Leftrightarrow every prime $q \equiv-1 \bmod 4$ which divides n divides it to an even power.

Proof S.C. obvious.
N.C. suppose $n=x^{2}+y^{2}$ and $q \mid n$ where $q=-1$ (4).

Suppose $q \not \backslash x$
$x^{2}+y^{2} \equiv 0 \bmod q$ and $\exists x_{0}$ such that $x x_{0} \equiv 1 \bmod q$. Therefore $\left(x_{0} y\right)^{2} \equiv-1 \bmod q$.
i.e. -1 is a quadratic residue $\bmod q$ which is false therefore $q \mid x$ and $q \mid y$ therefore $q^{2} \mid n$ therefore $\frac{n}{q^{2}}=x_{1}^{2}+y_{1}^{2}$.
If $q \left\lvert\, \frac{n}{q^{2}}\right.$ we repeat the argument. We can only do so a finite number of times and so q divides n to an even power.
Considering sums of 4 squares we have the following identity

$$
\begin{aligned}
\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}\right) & =\left(x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4}\right)^{2} \\
& +\left(x_{1} y_{2}-x_{2} y_{1}+x_{3} y_{4}-x_{4} y_{3}\right)^{2} \\
& +\left(x_{1} y_{3}-x_{3} y_{1}-x_{2} y_{4}+x_{4} y_{2}\right)^{2} \\
& +\left(x_{1} y_{4}-x_{4} y_{1}-x_{3} y_{2}+x_{2} y_{3}\right)^{2}
\end{aligned}
$$

From which it follows that the product of two representable numbers is representable.
Again if $x_{i} \equiv y_{i} \bmod m, \quad i=1,2,3,4$ and $\sum x_{i}^{2} \equiv 0$ then each of the four expressions on the right hand sided is $\equiv 0 \bmod m$.

Theorem (Lagrange) Every natural number is representable as the sum of four squares.

Proof S.T.P. for primes by the above identity.
$2=1^{2}+1^{2}+0^{2}+0^{2}$
$p \equiv 1$ (4) $p^{2}=x^{2}+y^{2}+0^{2}+0^{2}$
S.T.P. for $q \equiv-1$ (4)
\exists an integer a such that $\left(\frac{a}{q}\right)\left(\frac{a+1}{q}\right)=-1$
Then since $q \equiv-1$ (4) we have $\left(\frac{-a-1}{q}\right)=-\left(\frac{-1}{q}\right)=+1$.
$\exists x_{1}$ such that $x_{1}^{2} \equiv a(q)$ and $\exists x_{2}$ such that $x_{2}^{2} \equiv-a-1(q)$.
Now $x_{1}^{2}+x_{2}^{2}+1^{2}+0^{2} \equiv 0 \bmod q$ so some non-zero multiple of q is representable.
Let m be the least positive integer such that $m q=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}$. Then $1 \leq m<q$. Suppose that $m>1$
We first prove that m is odd. Suppose that m is even. Then the number of odd x 's is even, and suppose that they come first in the representation.

$$
\left(\frac{1}{2} m\right) q=\left(\frac{x_{1}+x_{2}}{2}\right)^{2}+\left(\frac{x_{1}-x_{2}}{2}\right)^{2}+\left(\frac{x_{3}+x_{4}}{2}\right)^{2}+\left(\frac{x_{3}-x_{4}}{2}\right)^{2}
$$

All the terms on the right hand side are integers so we have a contradiction, since $\left(\frac{1}{2} m\right) q$ is not representable.
Thus m is odd, and so for $i=1,2,3,4$ we choose y_{i} such that $x_{i} \equiv$ $y_{i}(m)\left|y_{i}\right|<\frac{1}{2} m$ then
$l m=y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}$ where $1 \leq l<m$
So $l m^{2} q=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}\right)=A^{2}+B^{2}+C^{2}+D^{2}$ by the above identity.
A, B, C, D are all divisible by m and so $l q$ is representable. Thus we have a contradiction and so $m=1$.
For 3 squares the result is $a^{q}(8 t+7)$ not representable, all others are.

