THEORY OF NUMBERS SUMS OF SQUARES

We wish to know which numbers are representable as sums of squares. For two squares

$$(x_1^2 + y_1^2)(x_2^2 + y_2^2) = (x_1x_2 + y_1y_2)^2 + (x_1y_2 - x_2y_1)^2$$

So the product of two numbers representable is also representable. We then ask what primes are representable.

Now the square of any even number is congruent to 0 (mod 4) and the square of any odd number is $\equiv 1$ (4). So the sum of two squares is congruent to 0 1 or 2 mod 4, so any number 4m+3 is not representable.

Theorem (Fermat) Every prime $p \equiv 1$ (4) is representable as the sum of two squares.

Proof 1 $\exists x_0$ such that $x_0^2 + 1 \equiv 0 \mod p$. (-1) is a quadratic residue mod p therefore $mp = x^2 + y^2$ for some m $(x_0^2 + 1^2 - mp)$.

Let m be the least positive integer such that $mp = x^2 + y^2$. Then $1 \le m \le p$. R.T.P. m = 1

Assume m > 1, $\exists x_1, y_1$ such that $x \equiv x_1 \mod m$ $y \equiv y_1 \mod m$.

 $|x_1| \leq \frac{1}{2}m \ |y_1| \leq \frac{1}{2}m$ $x_1^2 + y_1^2 \equiv x^2 + y^2 = 0 \ \text{mod} \ m$ Therefore $lm = x_1^2 + y_1^2$ where l is an integer $l = 0 \Rightarrow x_1^2 = y_1^2 = 0 \Rightarrow x \equiv 0 \ y \equiv 0 \Rightarrow m|x \ m|y \Rightarrow m|p$ therefore $1 \leq l < m$

For $lm \le \left(\frac{1}{2}m\right)^2 + \left(\frac{1}{2}m\right)^2 = \frac{1}{2}m^2 < m^2$

Now $lpm^2 = (x^2 + y^2)(x_1^2 + y_1^2) = (xx_1 + yy_1)^2 + (xy_1 - x_1y)^2$

Now $xx_1 + yy_1 \equiv 0 \mod m$ and $xy_1 - x_1y \equiv 0 \mod m$ therefore $lp = u^2 + v^2$, v, v integers. This is a contradiction therefore m = 1.

Proof 2 $\exists \lambda$ such that $\lambda^2 + 1 \equiv 0 \mod p$ S.T.P. $\exists (x, y) \neq (0, 0)$ such that $y \equiv \lambda x \mod p$ $x^2 + y^2 < 2p$.

Lemma Suppose $\lambda \not\equiv 0 \mod p$. Suppose e, f are natural numbers such that ef > p then \exists a non-trivial solution x, y of $y \equiv \lambda x \mod p$ satisfying $|x| \leq e - 1$ $|y| \leq f - 1$.

Proof Consider the set S of $y-\lambda x$ as x, y run through $0, 1, \ldots e-1; 0, 1, \ldots f-y$. The number of elements in s is ef > p therefore $\exists y' - \lambda x' \equiv y''\lambda x''$

mod p such that $(x'-x'')^2+(y'-y'')^2\neq 0$ Put y=y'-y''; mx=x'-x''' then x and y are the required numbers.

Now apply the lemma with $e = f = [p^{\frac{1}{2}}] + 1 > p^{\frac{1}{2}}$ then ef > p and $(e-1)^2 + (f-1)^2 = 2[p^{\frac{1}{2}}]^2 < 2p$.

Theorem A natural number n is representable as the sum of two squares \Leftrightarrow every prime $q \equiv -1 \mod 4$ which divides n divides it to an even power.

Proof S.C. obvious.

N.C. suppose $n = x^2 + y^2$ and q|n where q = -1 (4).

Suppose $q \not | x$

 $x^2 + y^2 \equiv 0 \mod q$ and $\exists x_0$ such that $xx_0 \equiv 1 \mod q$. Therefore $(x_0y)^2 \equiv -1 \mod q$.

i.e. -1 is a quadratic residue mod q which is false therefore q|x and q|y therefore $q^2|n$ therefore $\frac{n}{q^2}=x_1^2+y_1^2$.

If $q|\frac{n}{q^2}$ we repeat the argument. We can only do so a finite number of times and so q divides n to an even power.

Considering sums of 4 squares we have the following identity

$$(x_1^2 + x_2^2 + x_3^2 + x_4^2)(y_1^2 + y_2^2 + y_3^2 + y_4^2) = (x_1y_1 + x_2y_2 + x_3y_3 + x_4y_4)^2 + (x_1y_2 - x_2y_1 + x_3y_4 - x_4y_3)^2 + (x_1y_3 - x_3y_1 - x_2y_4 + x_4y_2)^2 + (x_1y_4 - x_4y_1 - x_3y_2 + x_2y_3)^2$$

From which it follows that the product of two representable numbers is representable.

Again if $x_i \equiv y_i \mod m$, i = 1, 2, 3, 4 and $\sum x_i^2 \equiv 0$ then each of the four expressions on the right hand sided is $\equiv 0 \mod m$.

Theorem (Lagrange) Every natural number is representable as the sum of four squares.

Proof S.T.P. for primes by the above identity.

$$2 = 1^{2} + 1^{2} + 0^{2} + 0^{2}$$

 $p \equiv 1 \ (4) \ p^{2} = x^{2} + y^{2} + 0^{2} + 0^{2}$
S.T.P. for $q \equiv -1 \ (4)$

 \exists an integer a such that $\left(\frac{a}{q}\right)$ $\left(\frac{a+1}{q}\right)=-1$

Then since $q \equiv -1$ (4) we have $\left(\frac{-a-1}{q}\right) = -\left(\frac{-1}{q}\right) = +1$.

 $\exists x_1 \text{ such that } x_1^2 \equiv a \ (q) \text{ and } \exists x_2 \text{ such that } x_2^2 \equiv -a - 1 \ (q).$

Now $x_1^2 + x_2^2 + 1^2 + 0^2 \equiv 0 \mod q$ so some non-zero multiple of q is representable.

Let m be the least positive integer such that $mq = x_1^2 + x_2^2 + x_3^2 + x_4^2$. Then $1 \le m < q$. Suppose that m > 1

We first prove that m is odd. Suppose that m is even. Then the number of odd x's is even, and suppose that they come first in the representation.

$$\left(\frac{1}{2}m\right)q = \left(\frac{x_1 + x_2}{2}\right)^2 + \left(\frac{x_1 - x_2}{2}\right)^2 + \left(\frac{x_3 + x_4}{2}\right)^2 + \left(\frac{x_3 - x_4}{2}\right)^2$$

All the terms on the right hand side are integers so we have a contradiction, since $\left(\frac{1}{2}m\right)q$ is not representable.

Thus m is odd, and so for i=1,2,3,4 we choose y_i such that $x_i \equiv y_i(m) |y_i| < \frac{1}{2}m$ then

 $lm = y_1^2 + y_2^2 + y_3^2 + y_4^2$ where $1 \le l < m$

So $lm^2q = (x_1^2 + x_2^2 + x_3^2 + x_4^2)(y_1^2 + y_2^2 + y_3^2 + y_4^2) = A^2 + B^2 + C^2 + D^2$ by the above identity.

A, B, C, D are all divisible by m and so lq is representable. Thus we have a contradiction and so m = 1.

For 3 squares the result is $a^q(8t+7)$ not representable, all others are.