THEORY OF NUMBERS
QUADRATIC RESIDUES

The problem can be reduced to a study of the congruence

22 = a mod p

Suppose a Z 0 mod p.
If 22 = a is soluble a is called a quadratic residue mod p.
If 22 = a is not soluble a is a quadratic non-residue mod p.

+1 if n is quadratic residue mod p.
The Legendre Symbol (%) = ¢ —1 if n is quadratic non-residue mod p
0 ifn=0modp

p—1 (n\ _
Theorem 3}, _; (p) =0
i.e. 1 the same number of quadratic residues and quadratic non-
residues.
2
Proof +1,+2, ...+ %(p — 1) form an R.S.R. so 12 22. .. (’%1) contain all
the quadratic residues.
22 =y? mod p = x = £y mod p
and this does not occur with the above R.S.R. so these are all the
quadratic residues mod p and there are ’%1 of them.

n

Theorem (;) =n" mod .

Proof n = 0 is trivial. If n is a quadratic residue 3 x such that n = 22 then

(:Ez)p%l = 2P~! = 1 by Fermats theorem. 3’%1 quadratic residues and

n 2 =1 has at most p—gl solutions therefore the quadratic residues are

all the solutions of "z = 1.
Suppose (n, p) = 1 then n?~! =1 therefore
(71172;1 — 1) (in_l + 1) = 0 therefore
n'z = +1
_ p=1
Corollary (f) = (-1)"z

Theorem For every pair of integers m, n we have

(7)-()G)



Proof If F = (m) - (m) <ﬁ> then £ = (mn)p%1 —mPn'r =0,

P p) \p
But |E| < 2 and p > 3 therefore E = 0.

Gauss’s Lemma Suppose n # 0 mod p. Let u be the number of those
numbers 1, n, 2n...21n whose remainder mod p is > %p. Then

G-

Proof Let the remainders > %p be aj...ay,. Let those < %p be B1...0,.
Then p+ v = p;21.
Consider the ”2;1 numbers p — oy, p—ag...p— oy, B, B, ... 0xu
1<f<PFandl<p-—a<iz
The f; are distinct for k'n = k”"n mod p = k' = k" mod p, (n, p) =1
Similarly the p — «; are distinct.

Now p—a; = mod p = oj+3; = p =0 mod p. Let a;j = un 3; = wvn
Then (u + v)n = 0 mod p therefore u + v = 0 mod p.

But 1 <u+ v <p—1 and so we have a contradiction.

Hence p —aq, p —as...p — au, Bi, P2...0, is a rearrangement of

1,2,... ’%1. Therefore

p—1
p—a))p—as)...(p—au)br...0 = 1,2...T(p)

- -

therefore (—1)* [[jn = []Jj mod p
j=1 j=1

therefore (—1)”nnT_1 = lmodp
therefore <E> = (=1)* mod p
p

therefore <E> = (-)¥p=>3
p

The Law of Quadratic Relciplrocity Suppose p, g are distinct odd primes.
Then (2) (2) = (-1)"z "=

q

ie. (’é) = (%) unless p = p = —1 mod 4 when (%) =— (1>

Proof 1 Let p' = ’%1, q = q%l. Write s = %:1 [%}



/

For each m=1,2,...p

mq a if > <p
mq=p|—|+ . 1
9 p[p] {ﬁlf<§p

(=

Summing over m

p*—1
3 g=ps+> a+> p

2 1 . 2
Now Sp—a+Yf=1+...+p=ELie yp—Ya+X ="

But sp+>a+> 0= ’%q therefore

ngl(q—l)zp(s—u)ﬁza

”QT_lq — 1lis even. 23 « is even therefore s =y mod 2.

By Gauss’s Lemma (%) = (—1)" therefore (%) =(-1)*
Write t = 27 [%], then (%) = (-1)

m=1
So S.T.P s+t =7pq¢
Consider the set of all numbers gx —py, v =1,2,...p"  y=1,2,...¢
This set contains p'¢’ numbers. No element in this set is zero.

The number of positive numbers in this set is

L[] =

z=1 | p

The number of negative numbers in this set is
q by | —
y=1 { q } =1

Hence the result.

Proof 2 Write e(a) = e?™
Suppose k is a natural number and «a is an integer. We define S(a, k) =

2 o . .
ke (%) This is called a Gaussian sum.

Theorem A (Proof postponed)
If £ is odd

k¥ ifk=1mod4
if k=—1mod 4

~.
>~
[S1E



S(1,k) = (1 +14)(1 — ®*)k3.

Theorem B (i) If pisan odd prime and (a, p) = 1 then S(a,p) = (%) S(1,p)
(ll) If (kl, l{ig) =1 then S(CL, kle) = S(akl, k’Q)S(CLl{?Q, ]{?1>

Proof (i)

S(a,p) = XP: e (a_ﬁ) = zp: c(n)e <%>
=1 p n=1 p

where c(n) is the number of solutions of 22 = n mod p.
When n = p3l solution and 1 + (%) =1
When (n,p) = 1 if n is a quadratic residue 3 2 solutions and
L+(3) =2
When (n,p) = 1 if n is a quadratic non-residue 3 no solutions and
14 (%) = 0. Therefore

S(a,p) =

(6)-0

For szle(w) =P 2" = :1:(11__2;) =0since z = e » #1

since (a,p) = 1.

Write an = m

()= () =6) (%)= () (5)

If (a,p) = 1 an n runs through a R.S.R. then an = m runs through
an R.S.R. Therefore

therefore



In particular for a = 1,

S(L,p) =ixht (=) e (™)

Therefore S(a,p) = (%) S(1,p)
(ii) Suppose (ky ko) =1

S(a, kiky) = X e (22)
Suppose u runs through C.S.R. mod ks and v runs through C.S.R.
mod ky. Then kju+ kov runs through C.S.R. mod k1ky. Therefore

[

ki ko (kyu + kov
S(a, k1k2> = Z Z <1k'—k'2)>
v=1u=1 1h2
k1 ko 2
_ Z Z . aklu . akayv
v=1u=1 kl

= S(CL]{?Q, kl)S(akl, k’g)

Suppose now that p, ¢ are distinct odd primes.

Applying theorem B with a = 1 we have

S(Lpq) = Sp.q)S(q,p)
S(L,pq) = (13) S(L.q) (g) S(L,p)

1 p 1(q 1
5pq<pQ)2 = (q) €qq? (p) Epp?

1 ifk=1mod4
i1 fk=—-1mod4

p—1qg—1

Therefore (%) (%) =(-1)7= >

In connection with theorem A it is easy to prove the result to within a
+ sign as we shall now see.

If (2a,k) =

where ¢, = {

[S(a, k)" = S(a,k)S(—a,k)

i (ax )fj (M) sum over C.S.R.

5



()

=1 y:l

2 —2axy
— 1k _4Y >
Y e < k ) Z e A

=1

8

8

I
N

The inner sum = k if y = k and 0 otherwise.

S(1,p).S(=1,p) = »p
—1 s
(7) (S = p

S(Lp)?* = (&p
therefore S(1,p) = =epp

D=

)2
1
2

Corollary to Gauss’s Lemma

(G)=o=={0 BZ56

Jacobi Symbol We define, for m odd

ny 1 ifm= 41
@ -{erh @
Then (*5) = 2 (i) = () (52)

(42) = (%) (%)

If 22 = n mod m then (%) = +1 but the converse is not true.

Theorem (i) (%) =(=1)"2 m>0m odd.
(i) (2)=(-1)*" modd
(i) () (%) = (="
m, n odd but not both negative and (m, n) = 1.

Proof Suppose n =[[p; m =1[q p # q. Suppose first that m > 0n > 0
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() (3) =1L (5) = (V=" = (-nPn
(i) (2) (2) =1L, o {(2) (2)} = (DT T = (pynan

So R.T.P. A, = ™~ mod 2, B,, = m28_1 mod 2.
Now r, s odd = (r —1)(s — 1) = 0 mod 4.
So % + % =5 ! mod 2 and by induction
ool 4 e = Deefeml mod 2
Also (r? = 1)(s* = 1) = 0 mod 64 and so
r2—1 A e |
S + T = 3 mod 8
and by induction
rf—l r2—1 _ r%...r%—l
3 + ...+ g = 3
Thus A4,, = ™ mod 2 and B,, = ™= mod 8 and so mod 2.

2 8
(i) and (ii) are unaffected by our assumption that m > 0 n > 0.
(iii) Suppose m > 0 n < 0.

Write n = —n/

() ()= (50) ()= () () () = i
Now (252) + (451) () = (252) (55) = (=) () mos

We can use the Jacobi symbol to evaluate Legendre symbols by
this theorem.
e (B) - ~ () = —(-3) = () - (3) - (=2) -

()~ () -

Exercise (1) p an odd prime. Consider 1,2,3.... Pick the least quadratic
non-residue ¢ mod p. Prove ¢ = O(p%)
It is known that ¢ = O(p®) a > ie_%
It is conjectured that ¢ = O(p®)

[Hint ¢ must be prime. 3 a multiple of ¢ such that p < mqg < p+ q.
What about m)|

(2)1,2,..p—leg =41 ey ==+1



For how many n among 1,2,...p — 2 is (%) =€ (%) = &9

Suppose the answer is (g1, €3)

Ap(ey,e9) = Zﬁj (1 +é (%)) (1 T e (%>)



