THEORY OF NUMBERS
 QUADRATIC RESIDUES

The problem can be reduced to a study of the congruence

$$
x^{2} \equiv a \bmod p
$$

Suppose $a \not \equiv 0 \bmod p$.
If $x^{2} \equiv a$ is soluble a is called a quadratic residue $\bmod p$.
If $x^{2} \equiv a$ is not soluble a is a quadratic non-residue $\bmod p$.
The Legendre Symbol $\left(\frac{n}{p}\right)=\left\{\begin{array}{cl}+1 & \text { if } n \text { is quadratic residue } \bmod p . \\ -1 & \text { if } n \text { is quadratic non-residue } \bmod p \\ 0 & \text { if } n \equiv 0 \bmod p\end{array}\right.$
Theorem $\sum_{n=1}^{p-1}\left(\frac{n}{p}\right)=0$
i.e. \exists the same number of quadratic residues and quadratic nonresidues.
Proof $\pm 1, \pm 2, \ldots \pm \frac{1}{2}(p-1)$ form an R.S.R. so $1^{2} 2^{2} \ldots\left(\frac{p-1}{2}\right)^{2}$ contain all the quadratic residues. $x^{2} \equiv y^{2} \bmod p \Rightarrow x \equiv \pm y \bmod p$ and this does not occur with the above R.S.R. so these are all the quadratic residues mod p and there are $\frac{p-1}{2}$ of them.

Theorem $\left(\frac{n}{p}\right) \equiv n^{\frac{p-1}{2}} \bmod p$.
Proof $n \equiv 0$ is trivial. If n is a quadratic residue $\exists x$ such that $n \equiv x^{2}$ then $\left(x^{2}\right)^{\frac{p-1}{2}}=x^{p-1} \equiv 1$ by Fermats theorem. $\exists \frac{p-1}{2}$ quadratic residues and $n^{\frac{p-1}{2}} \equiv 1$ has at most $\frac{p-1}{2}$ solutions therefore the quadratic residues are all the solutions of $n^{\frac{p-1}{2}}=1$.
Suppose $(n, p)=1$ then $n^{p-1} \equiv 1$ therefore
$\left(n^{\frac{p-1}{2}}-1\right)\left(n^{\frac{p-1}{2}}+1\right) \equiv 0$ therefore
$n^{\frac{p-1}{2}} \equiv \pm 1$
Corollary $\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}$
Theorem For every pair of integers m, n we have

$$
\left(\frac{m n}{p}\right)=\left(\frac{m}{p}\right)\left(\frac{n}{p}\right)
$$

Proof If $E=\left(\frac{m n}{p}\right)-\left(\frac{m}{p}\right)\left(\frac{n}{p}\right)$ then $E \equiv(m n)^{\frac{p-1}{2}}-m^{\frac{p-1}{2}} n^{\frac{p-1}{2}} \equiv 0$.
But $|E| \leq 2$ and $p \geq 3$ therefore $E=0$.
Gauss's Lemma Suppose $n \not \equiv 0 \bmod p$. Let μ be the number of those numbers $1, n, 2 n \ldots \frac{p-1}{2} n$ whose remainder $\bmod p$ is $>\frac{1}{2} p$. Then $\left(\frac{n}{p}\right)=(-1)^{\mu}$

Proof Let the remainders $>\frac{1}{2} p$ be $\alpha_{1} \ldots \alpha_{\mu}$. Let those $<\frac{1}{2} p$ be $\beta_{1} \ldots \beta_{\nu}$. Then $\mu+\nu=\frac{p-1}{2}$.
Consider the $\frac{p-1}{2}$ numbers $p-\alpha_{1}, p-\alpha_{2} \ldots p-\alpha_{\mu}, \beta_{1}, \beta_{2}, \ldots \beta_{n} u$
$1 \leq \beta \leq \frac{p-1}{2}$ and $1 \leq p-\alpha \leq \frac{p-1}{2}$
The β_{i} are distinct for $k^{\prime} n \equiv k^{\prime \prime} n \bmod p \Rightarrow k^{\prime} \equiv k^{\prime \prime} \bmod p,(n, p)=1$
Similarly the $p-\alpha_{j}$ are distinct.
Now $p-\alpha_{j} \equiv \beta_{i} \bmod p \Rightarrow \alpha_{j}+\beta_{i} \equiv p \equiv 0 \bmod p$. Let $\alpha_{j}=u n \beta_{i}=v n$
Then $(u+v) n \equiv 0 \bmod p$ therefore $u+v \equiv 0 \bmod p$.
But $1 \leq u+v \leq p-1$ and so we have a contradiction.
Hence $p-\alpha_{1}, p-\alpha_{2} \ldots p-\alpha_{\mu}, \beta_{1}, \beta_{2} \ldots \beta_{\nu}$ is a rearrangement of $1,2, \ldots \frac{p-1}{2}$. Therefore

$$
\begin{aligned}
\left(p-\alpha_{1}\right)\left(p-\alpha_{2}\right) \ldots\left(p-\alpha_{\mu}\right) \beta_{1} \ldots \beta_{\nu} & \equiv 1,2 \ldots \frac{p-1}{2}(p) \\
\text { therefore }(-1)^{\mu} \prod_{j=1}^{\frac{p-1}{2}} j n & \equiv \prod_{j=1}^{\frac{p-1}{2}} j \bmod p \\
\text { therefore }(-1)^{\mu} n^{\frac{n-1}{2}} & \equiv 1 \bmod p \\
\text { therefore }\left(\frac{n}{p}\right) & \equiv(-1)^{\mu} \bmod p \\
\text { therefore }\left(\frac{n}{p}\right) & =(-1)^{\mu} p \geq 3
\end{aligned}
$$

The Law of Quadratic Reciprocity Suppose p, q are distinct odd primes.
Then $\left(\frac{p}{q}\right)\left(\frac{p}{p}\right)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}}$
i.e. $\left(\frac{p}{q}\right)=\left(\frac{q}{p}\right)$ unless $p \equiv p \equiv-1 \bmod 4$ when $\left(\frac{p}{q}\right)=-\left(\frac{q}{p}\right)$

Proof 1 Let $p^{\prime}=\frac{p-1}{2}, q^{\prime}=\frac{q-1}{2}$. Write $s=\sum_{m=1}^{p^{\prime}}\left[\frac{m q}{p}\right]$

For each $m=1,2, \ldots p^{\prime}$

$$
m q=p\left[\frac{m q}{p}\right]+ \begin{cases}\alpha & \text { if }>\frac{1}{2} p \\ \beta & \text { if }<\frac{1}{2} p\end{cases}
$$

Summing over m

$$
\frac{p^{2}-1}{8} q=p s+\sum \alpha+\sum \beta
$$

Now $\sum p-\alpha+\sum \beta=1+\ldots+p^{\prime}=\frac{p^{2}-1}{8}$ i.e. $\mu p-\sum \alpha+\sum \beta=\frac{p^{2}-1}{8}$
But $s p+\sum \alpha+\sum \beta=\frac{p^{2}-1}{8} q$ therefore

$$
\frac{p^{2}-1}{8}(q-1)=p(s-\mu)+2 \sum \alpha
$$

$\frac{p^{2}-1}{8} q-1$ is even. $2 \sum \alpha$ is even therefore $s \equiv \mu \bmod 2$.
By Gauss's Lemma $\left(\frac{q}{p}\right)=(-1)^{\mu}$ therefore $\left(\frac{q}{p}\right)=(-1)^{s}$
Write $t=\sum_{m=1}^{q^{\prime}}\left[\frac{m p}{q}\right]$, then $\left(\frac{p}{q}\right)=(-1)^{t}$
So S.T.P $s+t=p^{\prime} q^{\prime}$
Consider the set of all numbers $q x-p y, x=1,2, \ldots p^{\prime} y=1,2, \ldots q^{\prime}$
This set contains $p^{\prime} q^{\prime}$ numbers. No element in this set is zero.
The number of positive numbers in this set is
$\sum_{x=1}^{p^{\prime}}\left[\frac{q x}{p}\right]=s$
The number of negative numbers in this set is
$\sum_{y=1}^{q}\left[\frac{p y}{q}\right]=t$
Hence the result.
Proof 2 Write $e(\alpha)=e^{2 \pi i \alpha}$
Suppose k is a natural number and a is an integer. We define $S(a, k)=$ $\sum_{x=1}^{k} e\left(\frac{a x^{2}}{k}\right)$. This is called a Gaussian sum.

Theorem A (Proof postponed)
If k is odd

$$
S(1, k)=\left\{\begin{array}{cc}
k^{\frac{1}{v}} & \text { if } k \equiv 1 \bmod 4 \\
i k^{\frac{1}{2}} & \text { if } k \equiv-1 \bmod 4
\end{array}\right.
$$

$$
S(1, k)=\frac{1}{2}(1+i)\left(1-i^{3 k}\right) k^{\frac{1}{2}} .
$$

Theorem B (i) If p is an odd prime and $(a, p)=1$ then $S(a, p)=\left(\frac{a}{p}\right) S(1, p)$
(ii) If $\left(k_{1}, k_{2}\right)=1$ then $S\left(a, k_{1} k_{2}\right)=S\left(a k_{1}, k_{2}\right) S\left(a k_{2}, k_{1}\right)$

Proof (i)

$$
S(a, p)=\sum_{x=1}^{p} e\left(\frac{a x^{2}}{p}\right)=\sum_{n=1}^{p} c(n) e\left(\frac{a n}{p}\right)
$$

where $c(n)$ is the number of solutions of $x^{2} \equiv n \bmod p$.
When $n=p \exists 1$ solution and $1+\left(\frac{n}{p}\right)=1$.
When $(n, p)=1$ if n is a quadratic residue $\exists 2$ solutions and $1+\left(\frac{n}{p}\right)=2$
When $(n, p)=1$ if n is a quadratic non-residue \exists no solutions and $1+\left(\frac{n}{p}\right)=0$. Therefore

$$
\begin{aligned}
S(a, p) & =\sum_{n=1}^{p}\left(1+\left(\frac{n}{p}\right)\right) e\left(\frac{a n}{p}\right) \\
& =\sum_{n=1}^{p}\left(\frac{n}{p}\right) e\left(\frac{a n}{p}\right) \\
& =\sum_{n=1}^{p-1}\left(\frac{n}{p}\right) e\left(\frac{a n}{p}\right)
\end{aligned}
$$

$\left[\left(\frac{p}{p}\right)=0\right]$
For $\sum_{n=1}^{p} e\left(\frac{a n}{p}\right)=\sum_{n=1}^{p} z^{n}=x\left(\frac{1-z^{p}}{1-z}\right)=0$ since $z=e^{\frac{2 \pi i a}{p}} \neq 1$ since $(a, p)=1$.
Write $a n=m$
$\left(\frac{n}{p}\right)=\left(\frac{a^{2} n}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{a n}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{m}{p}\right)$
If $(a, p)=1$ an n runs through a R.S.R. then $a n=m$ runs through an R.S.R. Therefore

$$
\sum_{n=1}^{p-1} \frac{n}{p} e\left(\frac{a n}{p}\right)=\sum_{m=1}^{p-1}\left(\frac{a}{p}\right)\left(\frac{m}{p}\right) e\left(\frac{m}{p}\right)
$$

therefore

$$
S(a, p)=\left(\frac{a}{p}\right) \sum_{m=1}^{p-1}\left(\frac{m}{p}\right) e\left(\frac{m}{p}\right)
$$

In particular for $a=1$,

$$
S(1, p)=i \sum_{m=1}^{p-1}\left(\frac{m}{p}\right) e\left(\frac{m}{p}\right)
$$

Therefore $S(a, p)=\left(\frac{a}{p}\right) S(1, p)$
(ii) Suppose $\left(k_{1} k_{2}\right)=1$

$$
S\left(a, k_{1} k_{2}\right)=\sum_{x=1}^{k_{1} k_{2}} e\left(\frac{a x^{2}}{k_{1} k_{2}}\right)
$$

Suppose u runs through C.S.R. mod k_{2} and v runs through C.S.R. $\bmod k_{1}$. Then $k_{1} u+k_{2} v$ runs through C.S.R. $\bmod k_{1} k_{2}$. Therefore

$$
\begin{aligned}
S\left(a, k_{1} k_{2}\right) & =\sum_{v=1}^{k_{1}} \sum_{u=1}^{k_{2}} e\left(\frac{a\left(k_{1} u+k_{2} v\right)^{2}}{k_{1} k_{2}}\right) \\
& =\sum_{v=1}^{k_{1}} \sum_{u=1}^{k_{2}} e\left(\frac{a k_{1} u^{2}}{k_{2}}\right) e\left(\frac{a k_{2} v^{2}}{k_{1}}\right) \\
& =S\left(a k_{2}, k_{1}\right) S\left(a k_{1}, k_{2}\right)
\end{aligned}
$$

Suppose now that p, q are distinct odd primes.
Applying theorem B with $a=1$ we have

$$
\begin{aligned}
S(1, p q) & =S(p, q) S(q, p) \\
S(1, p q) & =\left(\frac{p}{q}\right) S(1, q)\left(\frac{q}{p}\right) S(1, p) \\
\varepsilon_{p q}(p q)^{\frac{1}{2}} & =\left(\frac{p}{q}\right) \varepsilon_{q} q^{\frac{1}{2}}\left(\frac{q}{p}\right) \varepsilon_{p} p^{\frac{1}{2}}
\end{aligned}
$$

where $\varepsilon_{k}= \begin{cases}1 & \text { if } k \equiv 1 \bmod 4 \\ i & \text { if } k \equiv-1 \bmod 4\end{cases}$
Therefore $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}}$
In connection with theorem A it is easy to prove the result to within a \pm sign as we shall now see.
If $(2 a, k)=1$

$$
\begin{aligned}
|S(a, k)|^{2} & =S(a, k) S(-a, k) \\
& =\sum_{x=1}^{k} e\left(\frac{a x^{2}}{k}\right) \sum_{y=1}^{k} e\left(\frac{-a(x+y)^{2}}{k}\right) \text { sum over C.S.R. }
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{x=1}^{k} \sum_{y=1}^{k} e\left(-\frac{2 a x y}{k}\right) e\left(-\frac{a y^{2}}{k}\right) \\
& =\sum y=1^{k} e\left(-\frac{a y^{2}}{k}\right) \sum_{x=1}^{k} e\left(\frac{-2 a x y}{k}\right) \\
& =k
\end{aligned}
$$

The inner sum $=k$ if $y=k$ and 0 otherwise.

$$
\begin{aligned}
S(1, p) \cdot S(-1, p) & =p \\
\left(\frac{-1}{p}\right)\{S(1, p)\}^{2} & =p \\
S(1, p)^{2} & =\left(\varepsilon_{p} p^{\frac{1}{2}}\right)^{2} \\
\text { therefore } S(1, p) & = \pm \varepsilon_{p} p^{\frac{1}{2}}
\end{aligned}
$$

Corollary to Gauss's Lemma

$$
\left(\frac{2}{o}\right)=(-1)^{\frac{p^{2}-1}{8}}= \begin{cases}+1 & \text { if } p \equiv \pm 1(8) \\ -1 & \text { if } p \equiv \pm 3\end{cases}
$$

Jacobi Symbol We define, for m odd

$$
\left(\frac{n}{m}\right)=\left\{\begin{array}{cl}
{ }^{1} & \text { if } m= \pm 1 \\
\left(\frac{n}{p_{1}}\right)^{\alpha_{1}}\left(\frac{n}{p_{2}}\right)^{\alpha_{2}} \ldots\left(\frac{n}{p_{r}}\right)^{\alpha_{r}} & \text { if } m=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}
\end{array}\right.
$$

Then $\left(\frac{n+k m}{m}\right)=\frac{n}{m}\left(\frac{n}{m_{1} m_{2}}\right)=\left(\frac{n}{m_{1}}\right)\left(\frac{n}{m_{2}}\right)$ $\left(\frac{n_{1} n_{2}}{m}\right)=\left(\frac{n_{1}}{m}\right)\left(\frac{n_{2}}{m}\right)$
If $x^{2} \equiv n \bmod m$ then $\left(\frac{n}{m}\right)=+1$ but the converse is not true.
Theorem (i) $\left(\frac{-1}{m}\right)=(-1)^{\frac{m-1}{2}} m>0 m$ odd.
(ii) $\left(\frac{2}{m}\right)=(-1)^{\frac{m^{2}-1}{8}} m$ odd.
(iii) $\left(\frac{n}{m}\right)\left(\frac{m}{n}\right)=(-1)^{\frac{m-1}{2} \frac{n-1}{2}}$
m, n odd but not both negative and $(m, n)=1$.
Proof Suppose $n=\Pi p ; m=\Pi q p \neq q$. Suppose first that $m>0 n>0$
(i) $\left(\frac{-1}{m}\right) \prod_{q}\left(\frac{-1}{q}\right)=(-1)^{\sum \frac{q-1}{2}}=(-1)^{A m}$

(iii) $\left(\frac{n}{m}\right)\left(\frac{m}{n}\right)=\prod_{p, q}\left\{\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)\right\}=(-1)^{\sum \frac{p-1}{2} \sum \frac{q-1}{2}}=(-1)^{\text {AnAm }}$

So R.T.P. $A_{m} \equiv \frac{m-1}{2} \bmod 2, B_{m} \equiv \frac{m^{2}-1}{8} \bmod 2$.
Now r, s odd $\Rightarrow(r-1)(s-1) \equiv 0 \bmod 4$.
So $\frac{r-1}{2}+\frac{s-1}{2} \equiv \frac{r s-1}{2} \bmod 2$ and by induction
$\frac{r_{1}-1}{2}+\ldots+\frac{r_{v}-1}{2} \equiv \frac{r_{1} \ldots r_{v}-1}{2} \bmod 2$
Also $\left(r^{2}-1\right)\left(s^{2}-1\right) \equiv 0 \bmod 64$ and so
$\frac{r^{2}-1}{8}+\frac{s^{2}}{8} \equiv \frac{r^{2} s^{2}-1}{8} \bmod 8$
and by induction
$\frac{r_{1}^{2}-1}{8}+\ldots+\frac{r_{v}^{2}-1}{8}=\frac{r_{1}^{2} \ldots r_{v}^{2}-1}{8}$
Thus $A_{m} \equiv \frac{m-1}{2} \bmod 2$ and $B_{m} \equiv \frac{m^{2}-1}{8} \bmod 8$ and so $\bmod 2$.
(i) and (ii) are unaffected by our assumption that $m>0 n>0$.
(iii) Suppose $m>0 n<0$.

Write $n=-n^{\prime}$

$$
\left(\frac{n}{m}\right)\left(\frac{m}{n}\right)=\left(-\frac{n^{\prime}}{m}\right)\left(\frac{m}{n^{\prime}}\right)=\left(-\frac{1}{m}\right)\left(\frac{n^{\prime}}{m}\right)\left(\frac{m}{n^{\prime}}\right)=(-1)^{\frac{m-1}{2}+\frac{n^{\prime}-1}{2} \cdot \frac{m-1}{2}}
$$

Now $\left(\frac{m-1}{2}\right)+\left(\frac{n^{\prime}-1}{2}\right)\left(\frac{m-1}{2}\right)=\left(\frac{m-1}{2}\right)\left(\frac{-n+1}{2}\right)=\left(\frac{m-1}{2}\right)\left(\frac{n-1}{2}\right) \bmod$ 2.

We can use the Jacobi symbol to evaluate Legendre symbols by this theorem.

$$
\begin{aligned}
& \text { e.g. }\left(\frac{31}{103}\right)=-\left(\frac{103}{31}\right)=-\left(-\frac{21}{31}\right)=\left(\frac{31}{-21}\right)=\left(\frac{31}{21}\right)=\left(\frac{-11}{-21}\right)= \\
& \left(\frac{21}{11}\right)=\left(\frac{-1}{11}\right)=-1
\end{aligned}
$$

Exercise (1) p an odd prime. Consider $1,2,3 \ldots$ Pick the least quadratic
non-residue $q \bmod p$. Prove $q=O\left(p^{\frac{1}{2}}\right)$
It is known that $q=O\left(p^{\alpha}\right) \alpha>\frac{1}{4} e^{-\frac{1}{2}}$
It is conjectured that $q=O\left(p^{\varepsilon}\right)$
[Hint q must be prime. \exists a multiple of q such that $p<m q<p+q$.
What about m]
(2) $1,2, \ldots p-1 \varepsilon_{1}= \pm 1 \varepsilon_{2}= \pm 1$

For how many n among $1,2, \ldots p-2$ is $\left(\frac{n}{p}\right)=\varepsilon_{1}\left(\frac{n+1}{p}\right)=\varepsilon_{2}$
Suppose the answer is $\psi\left(\varepsilon_{1}, \varepsilon_{2}\right)$
$4 \psi\left(\varepsilon_{1}, \varepsilon_{2}\right)=\sum_{n=1}^{p-2}\left(1+\varepsilon_{1}\left(\frac{n}{p}\right)\right)\left(1+\varepsilon_{2}\left(\frac{n+1}{p}\right)\right)$

