
THEORY OF NUMBERS
QUADRATIC RESIDUES

The problem can be reduced to a study of the congruence

x2 ≡ a mod p

Suppose a 6≡ 0 mod p.
If x2 ≡ a is soluble a is called a quadratic residue mod p.
If x2 ≡ a is not soluble a is a quadratic non-residue mod p.

The Legendre Symbol
(

n
p

)

=











+1 if n is quadratic residue mod p.
−1 if n is quadratic non-residue mod p
0 if n ≡ 0 mod p

Theorem
∑p−1

n=1

(

n
p

)

= 0

i.e. ∃ the same number of quadratic residues and quadratic non-
residues.

Proof ±1,±2, . . . ± 1
2
(p − 1) form an R.S.R. so 12 22 . . .

(

p−1

2

)2
contain all

the quadratic residues.

x2 ≡ y2 mod p⇒ x ≡ ±y mod p

and this does not occur with the above R.S.R. so these are all the
quadratic residues mod p and there are p−1

2
of them.

Theorem
(

n
p

)

≡ n
p−1

2 mod p.

Proof n ≡ 0 is trivial. If n is a quadratic residue ∃ x such that n ≡ x2 then

(x2)
p−1

2 = xp−1 ≡ 1 by Fermats theorem. ∃ p−1

2
quadratic residues and

n
p−1

2 ≡ 1 has at most p−1

2
solutions therefore the quadratic residues are

all the solutions of n
p−1

2 = 1.

Suppose (n, p) = 1 then np−1 ≡ 1 therefore
(

n
p−1

2 − 1
) (

n
p−1

2 + 1
)

≡ 0 therefore

n
p−1

2 ≡ ±1

Corollary
(

−1
p

)

= (−1)
p−1

2

Theorem For every pair of integers m, n we have

(

mn

p

)

=

(

m

p

)(

n

p

)
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Proof If E =
(

mn
p

)

−
(

m
p

) (

n
p

)

then E ≡ (mn)
p−1

2 −m
p−1

2 n
p−1

2 ≡ 0.

But |E| ≤ 2 and p ≥ 3 therefore E = 0.

Gauss’s Lemma Suppose n 6≡ 0 mod p. Let µ be the number of those
numbers 1, n, 2n . . . p−1

2
n whose remainder mod p is > 1

2
p. Then

(

n
p

)

= (−1)µ

Proof Let the remainders > 1
2
p be α1 . . . αµ. Let those < 1

2
p be β1 . . . βν .

Then µ+ ν = p−1

2
.

Consider the p−1

2
numbers p− α1, p− α2 . . . p− αµ, β1, β2, . . . βnu

1 ≤ β ≤ p−1

2
and 1 ≤ p− α ≤ p−1

2

The βi are distinct for k
′n ≡ k′′n mod p⇒ k′ ≡ k′′ mod p, (n, p) = 1

Similarly the p− αj are distinct.

Now p−αj ≡ βi mod p⇒ αj+βi ≡ p ≡ 0 mod p. Let αj = un βi = vn

Then (u+ v)n ≡ 0 mod p therefore u+ v ≡ 0 mod p.

But 1 ≤ u+ v ≤ p− 1 and so we have a contradiction.

Hence p − α1, p − α2 . . . p − αµ, β1, β2 . . . βν is a rearrangement of
1, 2, . . . p−1

2
. Therefore

(p− α1)(p− α2) . . . (p− αµ)β1 . . . βν ≡ 1, 2 . . .
p− 1

2
(p)

therefore (−1)µ
p−1

2
∏

j=1

jn ≡

p−1

2
∏

j=1

j mod p

therefore (−1)µn
n−1

2 ≡ 1 mod p

therefore

(

n

p

)

≡ (−1)µ mod p

therefore

(

n

p

)

= (−1)µ p ≥ 3

The Law of Quadratic Reciprocity Suppose p, q are distinct odd primes.
Then

(

p
q

) (

p
p

)

= (−1)
p−1

2

q−1

2

i.e.
(

p

q

)

=
(

q

p

)

unless p ≡ p ≡ −1 mod 4 when
(

p

q

)

= −
(

q

p

)

Proof 1 Let p′ = p−1

2
, q′ = q−1

2
. Write s =

∑p′

m=1

[

mq

p

]
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For each m = 1, 2, . . . p′

mq = p

[

mq

p

]

+

{

α if > 1
2
p

β if < 1
2
p

Summing over m

p2 − 1

8
q = ps+

∑

α +
∑

β

Now
∑

p− α +
∑

β = 1 + . . .+ p′ = p2−1

8
i.e. µp−

∑

α +
∑

β = p2−1

8

But sp+
∑

α +
∑

β = p2−1

8
q therefore

p2 − 1

8
(q − 1) = p(s− µ) + 2

∑

α

p2−1

8
q − 1 is even. 2

∑

α is even therefore s ≡ µ mod 2.

By Gauss’s Lemma
(

q

p

)

= (−1)µ therefore
(

q

p

)

= (−1)s

Write t =
∑q′

m=1

[

mp
q

]

, then
(

p
q

)

= (−1)t

So S.T.P s+ t = p′q′

Consider the set of all numbers qx− py, x = 1, 2, . . . p′ y = 1, 2, . . . q′

This set contains p′q′ numbers. No element in this set is zero.

The number of positive numbers in this set is
∑p′

x=1

[

qx

p

]

= s

The number of negative numbers in this set is
∑q

y=1

[

py

q

]

= t

Hence the result.

Proof 2 Write e(α) = e2πiα

Suppose k is a natural number and a is an integer. We define S(a, k) =
∑k

x=1 e
(

ax2

k

)

. This is called a Gaussian sum.

Theorem A (Proof postponed)

If k is odd

S(1, k) =

{

k
1

” if k ≡ 1 mod 4

ik
1

2 if k ≡ −1 mod 4
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S(1, k) = 1
2
(1 + i)(1− i3k)k

1

2 .

Theorem B (i) If p is an odd prime and (a, p) = 1 then S(a, p) =
(

a
p

)

S(1, p)

(ii) If (k1, k2) = 1 then S(a, k1k2) = S(ak1, k2)S(ak2, k1)

Proof (i)

S(a, p) =
p
∑

x=1

e

(

ax2

p

)

=
p
∑

n=1

c(n)e

(

an

p

)

where c(n) is the number of solutions of x2 ≡ n mod p.

When n = p∃1 solution and 1 +
(

n
p

)

= 1.

When (n, p) = 1 if n is a quadratic residue ∃ 2 solutions and

1 +
(

n
p

)

= 2

When (n, p) = 1 if n is a quadratic non-residue ∃ no solutions and

1 +
(

n
p

)

= 0. Therefore

S(a, p) =
p
∑

n=1

(

1 +

(

n

p

))

e

(

an

p

)

=
p
∑

n=1

(

n

p

)

e

(

an

p

)

=
p−1
∑

n=1

(

n

p

)

e

(

an

p

)

[(

p

p

)

= 0
]

For
∑p

n=1 e
(

an
p

)

=
∑p

n=1 z
n = x

(

1−zp

1−z

)

= 0 since z = e
2πia
p 6= 1

since (a, p) = 1.

Write an = m
(

n
p

)

=
(

a2n
p

)

=
(

a
p

) (

an
p

)

=
(

a
p

) (

m
p

)

If (a, p) = 1 an n runs through a R.S.R. then an = m runs through
an R.S.R. Therefore

p−1
∑

n=1

n

p
e

(

an

p

)

=
p−1
∑

m=1

(

a

p

)(

m

p

)

e

(

m

p

)

therefore

S(a, p) =

(

a

p

)

p−1
∑

m=1

(

m

p

)

e

(

m

p

)
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In particular for a = 1,

S(1, p) = i
∑p−1

m=1

(

m
p

)

e
(

m
p

)

Therefore S(a, p) =
(

a
p

)

S(1, p)

(ii) Suppose (k1 k2) = 1

S(a, k1k2) =
∑k1k2

x=1 e
(

ax2

k1k2

)

Suppose u runs through C.S.R. mod k2 and v runs through C.S.R.
mod k1. Then k1u+k2v runs through C.S.R. mod k1k2. Therefore

S(a, k1k2) =
k1
∑

v=1

k2
∑

u=1

e

(

a(k1u+ k2v)
2

k1k2

)

=
k1
∑

v=1

k2
∑

u=1

e

(

ak1u
2

k2

)

e

(

ak2v
2

k1

)

= S(ak2, k1)S(ak1, k2)

Suppose now that p, q are distinct odd primes.

Applying theorem B with a = 1 we have

S(1, pq) = S(p, q)S(q, p)

S(1, pq) =

(

p

q

)

S(1, q)

(

q

p

)

S(1, p)

εpq(pq)
1

2 =

(

p

q

)

εqq
1

2

(

q

p

)

εpp
1

2

where εk =

{

1 if k ≡ 1 mod 4
i if k ≡ −1 mod 4

Therefore
(

p
q

) (

q
p

)

= (−1)
p−1

2

q−1

2

In connection with theorem A it is easy to prove the result to within a
± sign as we shall now see.

If (2a, k) = 1

|S(a, k)|2 = S(a, k)S(−a, k)

=
k
∑

x=1

e

(

ax2

k

)

k
∑

y=1

e

(

−a(x+ y)2

k

)

sum over C.S.R.
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=
k
∑

x=1

k
∑

y=1

e

(

−
2axy

k

)

e

(

−
ay2

k

)

=
∑

y = 1ke

(

−
ay2

k

)

k
∑

x=1

e

(

−2axy

k

)

= k

The inner sum = k if y = k and 0 otherwise.

S(1, p).S(−1, p) = p
(

−1

p

)

{S(1, p)}2 = p

S(1, p)2 = (εpp
1

2 )2

therefore S(1, p) = ±εpp
1

2

Corollary to Gauss’s Lemma

(

2

o

)

= (−1)
p2−1

8 =

{

+1 ifp ≡ ±1 (8)
−1 ifp ≡ ±3 (8)

Jacobi Symbol We define, for m odd

(

n

m

)

=

{

1 if m = ±1
(

n
p1

)α1
(

n
p2

)α2

. . .
(

n
pr

)αr
if m = pα1

1 . . . pαrr

Then
(

n+km
m

)

= n
m

(

n
m1m2

)

=
(

n
m1

) (

n
m2

)

(

n1n2

m

)

=
(

n1

m

) (

n2

m

)

If x2 ≡ n mod m then
(

n
m

)

= +1 but the converse is not true.

Theorem (i)
(

−1
m

)

= (−1)
m−1

2 m > 0 m odd.

(ii)
(

2
m

)

= (−1)
m2
−1

8 m odd.

(iii)
(

n
m

) (

m
n

)

= (−1)
m−1

2

n−1

2

m, n odd but not both negative and (m, n) = 1.

Proof Suppose n =
∏

p; m =
∏

q p 6= q. Suppose first that m > 0 n > 0
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(i)
(

−1
m

)

∏

q

(

−1
q

)

= (−1)
∑

q−1

2 = (−1)Am

(ii)
(

2
m

)

=
∏

q

(

2
q

)

= (−1)
∑

q2−1

8 = (−1)Bm

(iii)
(

n
m

) (

m
n

)

=
∏

p, q

{(

p

q

) (

q

p

)}

= (−1)
∑

p−1

2

∑

q−1

2 = (−1)AnAm

So R.T.P. Am ≡
m−1

2
mod 2, Bm ≡

m2
−1
8

mod 2.

Now r, s odd ⇒ (r − 1)(s− 1) ≡ 0 mod 4.

So r−1
2

+ s−1
2
≡ rs−1

2
mod 2 and by induction

r1−1
2

+ . . .+ rv−1
2
≡ r1...rv−1

2
mod 2

Also (r2 − 1)(s2 − 1) ≡ 0 mod 64 and so
r2−1

8
+ s2

8
≡ r2s2−1

8
mod 8

and by induction
r2
1
−1

8
+ . . .+ r2v−1

8
=

r2
1
...r2v−1

8

Thus Am ≡
m−1

2
mod 2 and Bm ≡

m2
−1
8

mod 8 and so mod 2.

(i) and (ii) are unaffected by our assumption that m > 0 n > 0.

(iii) Suppose m > 0 n < 0.

Write n = −n′

(

n

m

)(

m

n

)

=

(

−
n′

m

)

(

m

n′

)

=
(

−
1

m

)

(

n′

m

)

(

m

n′

)

= (−1)
m−1

2
+n′−1

2
.m−1

2

Now
(

m−1
2

)

+
(

n′−1
2

) (

m−1
2

)

=
(

m−1
2

) (

−n+1
2

)

=
(

m−1
2

) (

n−1
2

)

mod
2.

We can use the Jacobi symbol to evaluate Legendre symbols by
this theorem.

e.g.
(

31
103

)

= −
(

103
31

)

= −
(

−21
31

)

=
(

31
−21

)

=
(

31
21

)

=
(

−11
−21

)

=
(

21
11

)

=
(

−1
11

)

= −1

Exercise (1) p an odd prime. Consider 1, 2, 3 . . .. Pick the least quadratic

non-residue q mod p. Prove q = O(p
1

2 )

It is known that q = O(pα) α > 1
4
e−

1

2

It is conjectured that q = O(pε)

[Hint q must be prime. ∃ a multiple of q such that p < mq < p + q.
What about m]

(2) 1, 2, . . . p− 1 ε1 = ±1 ε2 = ±1
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For how many n among 1, 2, . . . p− 2 is
(

n
p

)

= ε1

(

n+1
p

)

= ε2

Suppose the answer is ψ(ε1, ε2)

4ψ(ε1, ε2) =
∑p−2

n=1

(

1 + ε1

(

n
p

)) (

1 + ε2

(

n+1
p

))
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