THEORY OF NUMBERS QUADRATIC RESIDUES

The problem can be reduced to a study of the congruence

$$x^2 \equiv a \mod p$$

Suppose $a \not\equiv 0 \mod p$.

If $x^2 \equiv a$ is soluble a is called a quadratic residue mod p.

If $x^2 \equiv a$ is not soluble a is a quadratic non-residue mod p.

The Legendre Symbol $\left(\frac{n}{p}\right) = \begin{cases} +1 & \text{if } n \text{ is quadratic residue mod } p. \\ -1 & \text{if } n \text{ is quadratic non-residue mod } p. \\ 0 & \text{if } n \equiv 0 \mod p \end{cases}$

Theorem $\sum_{n=1}^{p-1} \left(\frac{n}{p}\right) = 0$

i.e. \exists the same number of quadratic residues and quadratic non-residues.

Proof $\pm 1, \pm 2, \ldots \pm \frac{1}{2}(p-1)$ form an R.S.R. so $1^2 \ 2^2 \ldots \left(\frac{p-1}{2}\right)^2$ contain all the quadratic residues.

$$x^2 \equiv y^2 \mod p \Rightarrow x \equiv \pm y \mod p$$

and this does not occur with the above R.S.R. so these are all the quadratic residues mod p and there are $\frac{p-1}{2}$ of them.

Theorem $\left(\frac{n}{p}\right) \equiv n^{\frac{p-1}{2}} \mod p$.

Proof $n \equiv 0$ is trivial. If n is a quadratic residue $\exists x$ such that $n \equiv x^2$ then $(x^2)^{\frac{p-1}{2}} = x^{p-1} \equiv 1$ by Fermats theorem. $\exists \frac{p-1}{2}$ quadratic residues and $n^{\frac{p-1}{2}} \equiv 1$ has at most $\frac{p-1}{2}$ solutions therefore the quadratic residues are all the solutions of $n^{\frac{p-1}{2}} = 1$.

Suppose (n, p) = 1 then $n^{p-1} \equiv 1$ therefore $\left(n^{\frac{p-1}{2}} - 1\right) \left(n^{\frac{p-1}{2}} + 1\right) \equiv 0$ therefore $n^{\frac{p-1}{2}} \equiv +1$

Corollary $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$

Theorem For every pair of integers m, n we have

$$\left(\frac{mn}{p}\right) = \left(\frac{m}{p}\right)\left(\frac{n}{p}\right)$$

Proof If $E = \left(\frac{mn}{p}\right) - \left(\frac{m}{p}\right)\left(\frac{n}{p}\right)$ then $E \equiv (mn)^{\frac{p-1}{2}} - m^{\frac{p-1}{2}}n^{\frac{p-1}{2}} \equiv 0$. But $|E| \le 2$ and $p \ge 3$ therefore E = 0.

Gauss's Lemma Suppose $n \not\equiv 0 \mod p$. Let μ be the number of those numbers 1, n, $2n \dots \frac{p-1}{2}n$ whose remainder mod p is $> \frac{1}{2}p$. Then $\left(\frac{n}{p}\right) = (-1)^{\mu}$

Proof Let the remainders $> \frac{1}{2}p$ be $\alpha_1 \dots \alpha_{\mu}$. Let those $< \frac{1}{2}p$ be $\beta_1 \dots \beta_{\nu}$. Then $\mu + \nu = \frac{p-1}{2}$.

Consider the $\frac{p-1}{2}$ numbers $p - \alpha_1$, $p - \alpha_2 \dots p - \alpha_{\mu}$, β_1 , β_2 , ... $\beta_n u$ $1 \le \beta \le \frac{p-1}{2}$ and $1 \le p - \alpha \le \frac{p-1}{2}$

The β_i are distinct for $k'n \equiv k''n \mod p \Rightarrow k' \equiv k'' \mod p$, (n, p) = 1Similarly the $p - \alpha_i$ are distinct.

Now $p - \alpha_j \equiv \beta_i \mod p \Rightarrow \alpha_j + \beta_i \equiv p \equiv 0 \mod p$. Let $\alpha_j = un \ \beta_i = vn$ Then $(u + v)n \equiv 0 \mod p$ therefore $u + v \equiv 0 \mod p$.

But $1 \le u + v \le p - 1$ and so we have a contradiction.

Hence $p - \alpha_1$, $p - \alpha_2 \dots p - \alpha_{\mu}$, β_1 , $\beta_2 \dots \beta_{\nu}$ is a rearrangement of $1, 2, \dots \frac{p-1}{2}$. Therefore

$$(p - \alpha_1)(p - \alpha_2) \dots (p - \alpha_{\mu})\beta_1 \dots \beta_{\nu} \equiv 1, 2 \dots \frac{p-1}{2} (p)$$
therefore $(-1)^{\mu} \prod_{j=1}^{\frac{p-1}{2}} jn \equiv \prod_{j=1}^{\frac{p-1}{2}} j \mod p$
therefore $(-1)^{\mu} n^{\frac{n-1}{2}} \equiv 1 \mod p$
therefore $\left(\frac{n}{p}\right) \equiv (-1)^{\mu} \mod p$
therefore $\left(\frac{n}{p}\right) = (-1)^{\mu} p \geq 3$

The Law of Quadratic Reciprocity Suppose p, q are distinct odd primes. Then $\left(\frac{p}{q}\right)\left(\frac{p}{p}\right)=(-1)^{\frac{p-1}{2}\frac{q-1}{2}}$

i.e.
$$\binom{p}{q} = \binom{q}{p}$$
 unless $p \equiv p \equiv -1 \mod 4$ when $\binom{p}{q} = -\binom{q}{p}$

Proof 1 Let
$$p' = \frac{p-1}{2}$$
, $q' = \frac{q-1}{2}$. Write $s = \sum_{m=1}^{p'} \left[\frac{mq}{p} \right]$

For each $m = 1, 2, \dots p'$

$$mq = p \left[\frac{mq}{p} \right] + \left\{ \begin{array}{ll} \alpha & \text{if } > \frac{1}{2}p \\ \beta & \text{if } < \frac{1}{2}p \end{array} \right.$$

Summing over m

$$\frac{p^2 - 1}{8}q = ps + \sum \alpha + \sum \beta$$

Now $\sum p - \alpha + \sum \beta = 1 + \ldots + p' = \frac{p^2 - 1}{8}$ i.e. $\mu p - \sum \alpha + \sum \beta = \frac{p^2 - 1}{8}$ But $sp + \sum \alpha + \sum \beta = \frac{p^2 - 1}{8}q$ therefore

$$\frac{p^2 - 1}{8}(q - 1) = p(s - \mu) + 2\sum_{n} \alpha$$

 $\frac{p^2-1}{8}q-1$ is even. $2\sum \alpha$ is even therefore $s\equiv \mu \ \mathrm{mod}\ 2.$

By Gauss's Lemma $\left(\frac{q}{p}\right) = (-1)^{\mu}$ therefore $\left(\frac{q}{p}\right) = (-1)^{s}$

Write
$$t = \sum_{m=1}^{q'} \left[\frac{mp}{q} \right]$$
, then $\left(\frac{p}{q} \right) = (-1)^t$

So S.T.P
$$s + t = p'q'$$

Consider the set of all numbers qx - py, $x = 1, 2, \dots p'$ $y = 1, 2, \dots q'$

This set contains p'q' numbers. No element in this set is zero.

The number of positive numbers in this set is

$$\sum_{x=1}^{p'} \left[\frac{qx}{p} \right] = s$$

The number of negative numbers in this set is

$$\sum_{y=1}^{q} \left[\frac{py}{q} \right] = t$$

Hence the result.

Proof 2 Write $e(\alpha) = e^{2\pi i \alpha}$

Suppose k is a natural number and a is an integer. We define $S(a,k) = \sum_{x=1}^{k} e\left(\frac{ax^2}{k}\right)$. This is called a Gaussian sum.

Theorem A (Proof postponed)

If k is odd

$$S(1,k) = \begin{cases} k^{\frac{1}{n}} & \text{if } k \equiv 1 \bmod 4\\ ik^{\frac{1}{2}} & \text{if } k \equiv -1 \bmod 4 \end{cases}$$

$$S(1,k) = \frac{1}{2}(1+i)(1-i^{3k})k^{\frac{1}{2}}.$$

Theorem B (i) If p is an odd prime and (a, p) = 1 then $S(a, p) = \left(\frac{a}{p}\right) S(1, p)$

(ii) If $(k_1, k_2) = 1$ then $S(a, k_1 k_2) = S(ak_1, k_2)S(ak_2, k_1)$

Proof (i)

$$S(a,p) = \sum_{x=1}^{p} e\left(\frac{ax^2}{p}\right) = \sum_{n=1}^{p} c(n)e\left(\frac{an}{p}\right)$$

where c(n) is the number of solutions of $x^2 \equiv n \mod p$.

When $n = p \exists 1$ solution and $1 + \left(\frac{n}{p}\right) = 1$.

When (n,p) = 1 if n is a quadratic residue \exists 2 solutions and $1 + \left(\frac{n}{p}\right) = 2$

When (n, p) = 1 if n is a quadratic non-residue \exists no solutions and $1 + \left(\frac{n}{p}\right) = 0$. Therefore

$$S(a,p) = \sum_{n=1}^{p} \left(1 + \left(\frac{n}{p} \right) \right) e\left(\frac{an}{p} \right)$$
$$= \sum_{n=1}^{p} \left(\frac{n}{p} \right) e\left(\frac{an}{p} \right)$$
$$= \sum_{n=1}^{p-1} \left(\frac{n}{p} \right) e\left(\frac{an}{p} \right)$$

$$\left[\left(\frac{p}{p} \right) = 0 \right]$$

For $\sum_{n=1}^{p} e\left(\frac{an}{p}\right) = \sum_{n=1}^{p} z^n = x\left(\frac{1-z^p}{1-z}\right) = 0$ since $z = e^{\frac{2\pi i a}{p}} \neq 1$ since (a, p) = 1.

Write an = m

$$\left(\frac{n}{p}\right) = \left(\frac{a^2n}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{an}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{m}{p}\right)$$

If (a, p) = 1 an n runs through a R.S.R. then an = m runs through an R.S.R. Therefore

$$\sum_{n=1}^{p-1} \frac{n}{p} e\left(\frac{an}{p}\right) = \sum_{m=1}^{p-1} \left(\frac{a}{p}\right) \left(\frac{m}{p}\right) e\left(\frac{m}{p}\right)$$

therefore

$$S(a,p) = \left(\frac{a}{p}\right) \sum_{m=1}^{p-1} \left(\frac{m}{p}\right) e\left(\frac{m}{p}\right)$$

In particular for
$$a = 1$$
,
 $S(1, p) = i \sum_{m=1}^{p-1} \left(\frac{m}{p}\right) e\left(\frac{m}{p}\right)$
Therefore $S(a, p) = \left(\frac{a}{p}\right) S(1, p)$

(ii) Suppose $(k_1 \ k_2) = 1$ $S(a, k_1 k_2) = \sum_{x=1}^{k_1 k_2} e\left(\frac{ax^2}{k_1 k_2}\right)$

Suppose u runs through C.S.R. mod k_2 and v runs through C.S.R. mod k_1 . Then $k_1u + k_2v$ runs through C.S.R. mod k_1k_2 . Therefore

$$S(a, k_1 k_2) = \sum_{v=1}^{k_1} \sum_{u=1}^{k_2} e\left(\frac{a(k_1 u + k_2 v)^2}{k_1 k_2}\right)$$
$$= \sum_{v=1}^{k_1} \sum_{u=1}^{k_2} e\left(\frac{ak_1 u^2}{k_2}\right) e\left(\frac{ak_2 v^2}{k_1}\right)$$
$$= S(ak_2, k_1)S(ak_1, k_2)$$

Suppose now that p, q are distinct odd primes.

Applying theorem B with a = 1 we have

$$S(1, pq) = S(p, q)S(q, p)$$

$$S(1, pq) = \left(\frac{p}{q}\right)S(1, q)\left(\frac{q}{p}\right)S(1, p)$$

$$\varepsilon_{pq}(pq)^{\frac{1}{2}} = \left(\frac{p}{q}\right)\varepsilon_{q}q^{\frac{1}{2}}\left(\frac{q}{p}\right)\varepsilon_{p}p^{\frac{1}{2}}$$

where
$$\varepsilon_k = \begin{cases} 1 & \text{if } k \equiv 1 \mod 4 \\ i & \text{if } k \equiv -1 \mod 4 \end{cases}$$

Therefore
$$\binom{p}{q}\binom{q}{p}=(-1)^{\frac{p-1}{2}\frac{q-1}{2}}$$

In connection with theorem A it is easy to prove the result to within a \pm sign as we shall now see.

If
$$(2a, k) = 1$$

$$|S(a,k)|^2 = S(a,k)S(-a,k)$$

= $\sum_{x=1}^k e\left(\frac{ax^2}{k}\right) \sum_{y=1}^k e\left(\frac{-a(x+y)^2}{k}\right)$ sum over C.S.R.

$$= \sum_{x=1}^{k} \sum_{y=1}^{k} e\left(-\frac{2axy}{k}\right) e\left(-\frac{ay^2}{k}\right)$$
$$= \sum_{x=1}^{k} y = 1^k e\left(-\frac{ay^2}{k}\right) \sum_{x=1}^{k} e\left(\frac{-2axy}{k}\right)$$
$$= k$$

The inner sum = k if y = k and 0 otherwise.

$$S(1,p).S(-1,p) = p$$

$$\left(\frac{-1}{p}\right) \{S(1,p)\}^2 = p$$

$$S(1,p)^2 = (\varepsilon_p p^{\frac{1}{2}})^2$$
therefore $S(1,p) = \pm \varepsilon_p p^{\frac{1}{2}}$

Corollary to Gauss's Lemma

$$\left(\frac{2}{o}\right) = (-1)^{\frac{p^2 - 1}{8}} = \begin{cases} +1 & \text{if } p \equiv \pm 1 \ (8) \\ -1 & \text{if } p \equiv \pm 3 \ (8) \end{cases}$$

Jacobi Symbol We define, for m odd

$$\left(\frac{n}{m}\right) = \begin{cases}
\frac{1}{\left(\frac{n}{p_1}\right)^{\alpha_1} \left(\frac{n}{p_2}\right)^{\alpha_2} \dots \left(\frac{n}{p_r}\right)^{\alpha_r} & \text{if } m = \pm 1 \\
\left(\frac{n}{p_1}\right)^{\alpha_1} \left(\frac{n}{p_2}\right)^{\alpha_2} \dots \left(\frac{n}{p_r}\right)^{\alpha_r} & \text{if } m = p_1^{\alpha_1} \dots p_r^{\alpha_r}
\end{cases}$$
Then $\left(\frac{n+km}{m}\right) = \frac{n}{m} \left(\frac{n}{m_1 m_2}\right) = \left(\frac{n}{m_1}\right) \left(\frac{n}{m_2}\right)$

$$\left(\frac{n_1 n_2}{m}\right) = \left(\frac{n_1}{m}\right) \left(\frac{n_2}{m}\right)$$

If $x^2 \equiv n \mod m$ then $\left(\frac{n}{m}\right) = +1$ but the converse is not true.

Theorem (i) $\left(\frac{-1}{m}\right) = (-1)^{\frac{m-1}{2}} \ m > 0 \ m \text{ odd.}$

(ii)
$$\left(\frac{2}{m}\right) = (-1)^{\frac{m^2-1}{8}} m \text{ odd.}$$

(iii)
$$\left(\frac{n}{m}\right)\left(\frac{m}{n}\right) = (-1)^{\frac{m-1}{2}\frac{n-1}{2}}$$

 $m, n \text{ odd but not both negative and } (m, n) = 1.$

Proof Suppose $n = \prod p$; $m = \prod q \ p \neq q$. Suppose first that m > 0 n > 0

(i)
$$\left(\frac{-1}{m}\right) \prod_{q} \left(\frac{-1}{q}\right) = (-1)^{\sum \frac{q-1}{2}} = (-1)^{Am}$$

(ii)
$$\left(\frac{2}{m}\right) = \prod_{q} \left(\frac{2}{q}\right) = (-1)^{\sum \frac{q^2-1}{8}} = (-1)^{Bm}$$

(iii)
$$\left(\frac{n}{m}\right)\left(\frac{m}{n}\right) = \prod_{p, q} \left\{\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)\right\} = (-1)^{\sum \frac{p-1}{2}\sum \frac{q-1}{2}} = (-1)^{AnAm}$$

So R.T.P.
$$A_m \equiv \frac{m-1}{2} \mod 2$$
, $B_m \equiv \frac{m^2-1}{8} \mod 2$.

Now r, $s \text{ odd} \Rightarrow (r-1)(s-1) \equiv 0 \mod 4$.

So $\frac{r-1}{2} + \frac{s-1}{2} \equiv \frac{rs-1}{2} \mod 2$ and by induction $\frac{r_1-1}{2} + \ldots + \frac{r_v-1}{2} \equiv \frac{r_1\ldots r_v-1}{2} \mod 2$

$$\frac{r_1-1}{2} + \ldots + \frac{r_v-1}{2} \equiv \frac{r_1 \ldots r_v-1}{2} \mod 2$$

Also
$$(r^2 - 1)(s^2 - 1) \equiv 0 \mod 64$$
 and so

$$\frac{r^2 - 1}{8} + \frac{s^2}{8} \equiv \frac{r^2 s^2 - 1}{8} \mod 8$$

and by induction

$$\frac{r_1^2 - 1}{8} + \ldots + \frac{r_v^2 - 1}{8} = \frac{r_1^2 \dots r_v^2 - 1}{8}$$

Thus $A_m \equiv \frac{m-1}{2} \mod 2$ and $B_m \equiv \frac{m^2-1}{8} \mod 8$ and so mod 2.

(i) and (ii) are unaffected by our assumption that m > 0 n > 0.

(iii) Suppose m > 0 n < 0.

Write n = -n'

$$\left(\frac{n}{m}\right)\left(\frac{m}{n}\right) = \left(-\frac{n'}{m}\right)\left(\frac{m}{n'}\right) = \left(-\frac{1}{m}\right)\left(\frac{n'}{m}\right)\left(\frac{m}{n'}\right) = (-1)^{\frac{m-1}{2} + \frac{n'-1}{2} \cdot \frac{m-1}{2}}$$

Now
$$\left(\frac{m-1}{2}\right) + \left(\frac{n'-1}{2}\right)\left(\frac{m-1}{2}\right) = \left(\frac{m-1}{2}\right)\left(\frac{-n+1}{2}\right) = \left(\frac{m-1}{2}\right)\left(\frac{n-1}{2}\right) \mod 2$$
.

We can use the Jacobi symbol to evaluate Legendre symbols by this theorem.

e.g.
$$\left(\frac{31}{103}\right) = -\left(\frac{103}{31}\right) = -\left(-\frac{21}{31}\right) = \left(\frac{31}{-21}\right) = \left(\frac{31}{21}\right) = \left(\frac{-11}{-21}\right) = \left(\frac{21}{11}\right) = \left(\frac{-1}{11}\right) = -1$$

Exercise (1) p an odd prime. Consider $1, 2, 3 \dots$ Pick the least quadratic non-residue $q \mod p$. Prove $q = O(p^{\frac{1}{2}})$

It is known that $q = O(p^{\alpha}) \alpha > \frac{1}{4}e^{-\frac{1}{2}}$

It is conjectured that $q = O(p^{\varepsilon})$

[Hint q must be prime. \exists a multiple of q such that p < mq < p + q. What about m

(2)
$$1, 2, \dots p - 1$$
 $\varepsilon_1 = \pm 1$ $\varepsilon_2 = \pm 1$

For how many n among $1, 2, \dots p-2$ is $\left(\frac{n}{p}\right) = \varepsilon_1 \left(\frac{n+1}{p}\right) = \varepsilon_2$ Suppose the answer is $\psi(\varepsilon_1, \varepsilon_2)$ $4\psi(\varepsilon_1, \varepsilon_2) = \sum_{n=1}^{p-2} \left(1 + \varepsilon_1 \left(\frac{n}{p}\right)\right) \left(1 + \varepsilon_2 \left(\frac{n+1}{p}\right)\right)$