THEORY OF NUMBERS
 GAUSSIAN INTEGERS

$\alpha=a+i b, a b$ are rational integers.
Conjugate of $\alpha: \alpha^{\prime}=a-i b$
Norm of $\alpha=N(\alpha)=\alpha \alpha^{\prime}$
(i) $N(\alpha)$ is a rational integer.
(ii) $N(\alpha) \geq 0$ equality $\Leftrightarrow \alpha=0$.
(iii) $N(\alpha \beta)=N(\alpha) N(\beta)$ so $\mu|\nu \Rightarrow N(\mu)| N(\nu)$

Unit: ε such that $\varepsilon, \varepsilon^{-1}$ are both gaussian integers, $\varepsilon \mid \alpha$ for all α.
There are exactly 4 units $\pm 1 \pm i$
If $\alpha_{1}=\varepsilon \alpha$ we say α_{1} is associated to α.
Gaussian Prime: $\pi N(\pi)>1$, which has no divisors other than units or associates. If $N(\alpha)=p$ then α is G-prime, but the converse is not necessarily true.

Theorem (Euclidean Algorithm) Suppose α, β are G-integers, $\beta \neq 0$
$\exists \mu, \lambda$ such that $\alpha=\mu \beta+\lambda N(\lambda<N(\beta)$
Proof $\frac{\alpha}{\beta}=x+i y x, y$ rational. \exists rational integers u, v such that $|x-v| \leq$ $\frac{1}{2}|y-v| \leq \frac{1}{2}$
Write $\mu=u+i v \lambda=\alpha-\mu \beta$

$$
\begin{aligned}
N(\lambda) & =N(\alpha-\mu \beta) \\
& =|\alpha-\mu \beta|^{2} \\
& =|\beta|^{2}\left|\frac{\alpha}{\beta}-\mu\right|^{2} \\
& =|\beta|^{2}\left\{(x-u)^{2}+(y-v)^{2}\right\} \\
& \leq \frac{1}{2}|\beta|^{2}<N(\beta)
\end{aligned}
$$

Theorem (Greatest common denominator) α, β not both zero. $\exists \delta$ such that
(i) $\delta|\alpha ; \delta| \beta$
(ii) $\eta|\alpha ; \eta| \beta \Rightarrow \eta \mid \delta$
(iii) $\exists \lambda \mu$ such that $\delta=\lambda \alpha+\mu \beta$

Proof Consider the set S of all G-integers δ of the form $\lambda \alpha+\mu \beta$.
Let δ be such that $N(\delta)$ is minimal and positive. The proof follows as in the classical case.

Theorem $\pi|\alpha \beta \Rightarrow \pi| \alpha$ or $\pi \mid \beta$.
Proof Suppose π does not divide α then $(\pi, \alpha)=\varepsilon$. $\exists \lambda, \mu$ such that $\varepsilon=$ $\lambda \pi+\mu \alpha \beta=\lambda \pi \beta+\mu \alpha \beta$ therefore $\pi \mid \beta$

Theorem (Unique factorisation) Proof analogous to classical case.
Another proof of Fermat's theorem Suppose $p \equiv 1 \bmod 4 . \exists x$ such that $x^{2}+1 \equiv 0 \bmod p . \exists \pi$ such that $\pi \mid p . \pi$ is not associated to p.
For $\pi \mid x^{2}-1$ and so $\pi \mid(x+i)(x-i)$ therefore $\pi \mid x+i$ or $\pi \mid x-i$.
π associated to $p \Rightarrow p \mid x+i$ or $p \mid x-i$ which are not so therefore $N(\pi) \mid N(p)=p^{2}$ So $N(\pi)=1, p, p^{2}$
$N\left(\pi \neq 1 \pi\right.$ is prime $N\left(\pi \neq p^{2} \pi\right.$ is not associated to p therefore $N(\pi)=p$.
If $\pi=a+i b, p=a^{2}+b^{2}$.
Theorem The G-primes are
(i) $1+i$
(ii) $q \equiv-1$ (4)
(iii) $a+i b a>-b>0 a^{2}+b^{2}=p p \equiv 1$ (4)
and their associates.
Proof $\pi \mid N(\pi)=p_{1} \ldots p_{\nu}$ therefore every G-prime divides a rational prime.
(i) $N(1+i)=2$
(ii) $q \equiv-1$ (4) $\pi|q \Rightarrow N(\pi)| N(q)=q^{2}$ therefore $N(\pi)=1, q$ or q^{2}.
$N(\pi \neq 1 \pi$ is prime $N(\pi) \neq q$ by Fermats theorem therefore $N(\pi)=q^{2}$ therefore π is associated to q.
(iii) $p \equiv 1$ (4)
$p=(a+i b)(a-i b)($ Fermat $)=-i(a+i b)(b+i a)$
$a+i b, b+i a$ are both g-prime as their norms are equal to p.

Theorem Suppose $n>1$ and suppose $n=2^{r} p_{1}^{s_{1}} \ldots p_{\mu}^{s_{\mu}} q_{1}^{t_{1}} \ldots q_{\nu}^{t_{\nu}}$ where $p_{i} \equiv$ $1 \bmod 4 q_{i} \equiv-1 \bmod 4$.
If $r(n)$ is the number of representations of n as a sum of two squares then
$r(n)=\left\{\begin{array}{cl}0 & \text { if the } t \text { 's are not all even } \\ 4\left(s_{1}+1 \ldots\left(s_{\mu}+1\right)\right. & \text { is the } t \text { 's are all even }\end{array}\right.$
Note If $X(d)=\left\{\begin{array}{ccc}=1 & d \equiv 1 & (4) \\ -1 & d \equiv-1 & (4) \\ 0 & d \equiv 0 & (2)\end{array}\right.$ then $r(n)=4 \sum_{d \mid n} X(d)$ so
$r(n) \leq 4 d(n)$
Proof We look for the number of G-integers for which $N(\alpha)=n$
Now $n=\varepsilon(1+i)^{2 r} \pi_{1}^{s_{1}} \pi_{1}^{\prime s_{1}} \ldots \pi_{\mu}^{s_{\mu}} \pi^{\prime s_{\mu}} q_{1}^{t_{1}} \ldots q_{\nu}^{t_{\nu}}$
Since $2=-i(1+i)^{2}$ and $p \equiv 1(4) \Rightarrow p=\pi \pi^{\prime}$.
Now suppose $N(\alpha)=n$. Then $\alpha \mid n$ since $\alpha \mid N(\alpha$ therefore α is of the form

$$
\begin{equation*}
\alpha=\epsilon_{1}(1+i)^{R} \pi_{1}^{S_{1}} \pi_{1}^{S_{1}^{\prime}} \ldots q_{1}^{T_{1}} \ldots \tag{1}
\end{equation*}
$$

where $\left.0 \leq R \leq 2 r 0 \leq S_{1} \leq s_{1} 0 \leq S_{1}^{\prime} \leq s_{1} \ldots\right) \leq T_{1} \leq t_{1} \ldots\left(1^{\prime}\right)$
A number α of the form (1) satisfies

$$
\begin{equation*}
N(\alpha)=n \text { i.e. } \alpha \alpha^{\prime}=n \Leftrightarrow 2 R=2 r S_{1}+S_{1}^{\prime}=s_{1} \ldots 2 T_{1}=t_{1} \ldots \tag{2}
\end{equation*}
$$

Thus the number of α satisfying $\alpha \alpha^{\prime}=n$ is 4 times the number of α satisfying (2) subject to (1^{\prime}) (4 choices of ϵ_{1})
There are no solutions unless the t_{i} are all even.
If the t_{i} are all even then the T 's are unique and R is unique.
For S_{1} we have $s_{1}+1$ choices and then S_{1}^{\prime} is uniquely determined. Therefore the number of choices is $\left(s_{1}+1\right)\left(s_{2}+1\right) \ldots\left(s_{\mu}+1\right)$ therefore $r(n)=4\left(s_{1}+1\right)\left(s_{2}+1\right) \ldots\left(s_{\mu}+1\right)$.

