
THEORY OF NUMBERS
GAUSSIAN INTEGERS

α = a+ ib, a b are rational integers.
Conjugate of α : α′ = a− ib

Norm of α = N(α) = αα′

(i) N(α) is a rational integer.

(ii) N(α) ≥ 0 equality⇔ α = 0.

(iii) N(αβ) = N(α)N(β) so µ|ν ⇒ N(µ)|N(ν)

Unit: ε such that ε, ε−1 are both gaussian integers, ε|α for all α.
There are exactly 4 units ±1 ± i

If α1 = εα we say α1 is associated to α.
Gaussian Prime: π N(π) > 1, which has no divisors other than units or
associates. If N(α) = p then α is G-prime, but the converse is not necessarily
true.

Theorem (Euclidean Algorithm) Suppose α, β are G-integers, β 6= 0

∃µ, λ such that α = µβ + λ N(λ < N(β)

Proof α
β
= x+ iy x, y rational. ∃ rational integers u, v such that |x− v| ≤

1

2
|y − v| ≤ 1

2

Write µ = u+ iv λ = α− µβ

N(λ) = N(α− µβ)

= |α− µβ|2

= |β|2
∣

∣

∣

∣

∣

α

β
− µ

∣

∣

∣

∣

∣

2

= |β|2
{

(x− u)2 + (y − v)2
}

≤
1

2
|β|2 < N(β)

Theorem (Greatest common denominator) α, β not both zero. ∃δsuch
that

(i) δ|α; δ|β
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(ii) η|α; η|β ⇒ η|δ

(iii) ∃λµ such that δ = λα + µβ

Proof Consider the set S of all G-integers δ of the form λα + µβ.

Let δ be such that N(δ) is minimal and positive. The proof follows as
in the classical case.

Theorem π|αβ ⇒ π|α or π|β.

Proof Suppose π does not divide α then (π, α) = ε. ∃λ, µ such that ε =
λπ + µα β = λπβ + µαβ therefore π|β

Theorem (Unique factorisation) Proof analogous to classical case.

Another proof of Fermat’s theorem Suppose p ≡ 1 mod 4. ∃x such
that x2 + 1 ≡ 0 mod p. ∃π such that π|p. π is not associated to p.

For π|x2 − 1 and so π|(x+ i)(x− i) therefore π|x+ i or π|x− i.

π associated to p ⇒ p|x + i or p|x − i which are not so therefore
N(π)|N(p) = p2 So N(π) = 1, p, p2

N(π 6= 1 π is prime N(π 6= p2 π is not associated to p therefore
N(π) = p.

If π = a+ ib, p = a2 + b2.

Theorem The G-primes are

(i) 1 + i

(ii) q ≡ −1 (4)

(iii) a+ ib a > − b > 0 a2 + b2 = p p ≡ 1 (4)

and their associates.

Proof π|N(π) = p1 . . . pν therefore every G-prime divides a rational prime.

(i) N(1 + i) = 2

(ii) q ≡ −1 (4) π|q ⇒ N(π)|N(q) = q2 therefore N(π) = 1, q or q2.

N(π 6= 1 π is prime N(π) 6= q by Fermats theorem therefore
N(π) = q2 therefore π is associated to q.

(iii) p ≡ 1 (4)
p = (a+ ib)(a− ib) (Fermat) = −i(a+ ib)(b+ ia)

a+ ib, b+ ia are both g-prime as their norms are equal to p.
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Theorem Suppose n > 1 and suppose n = 2rps11 . . . psµµ qt11 . . . qtνν where pi ≡
1 mod 4 qi ≡ −1 mod 4.

If r(n) is the number of representations of n as a sum of two squares
then

r(n) =

{

0 if the t’s are not all even
4(s1 + 1 . . . (sµ + 1) is the t’s are all even

Note If X(d) =











= 1 d ≡ 1 (4)
−1 d ≡ −1 (4)
0 d ≡ 0 (2)

then r(n) = 4
∑

d|nX(d) so

r(n) ≤ 4d(n)

Proof We look for the number of G-integers for which N(α) = n

Now n = ε(1 + i)2rπs1
1 π

′s1
1
. . . πsµ

µ π′
sµ
µ qt11 . . . qtνν

Since 2 = −i(1 + i)2 and p ≡ 1 (4)⇒ p = ππ′.

Now suppose N(α) = n. Then α|n since α|N(α therefore α is of the
form

α = ε1(1 + i)RπS1

1
π
′S′

1

1 . . . qT1

1
. . . (1)

where 0 ≤ R ≤ 2r 0 ≤ S1 ≤ s1 0 ≤ S ′
1
≤ s1 . . .) ≤ T1 ≤ t1 . . . (1

′)

A number α of the form (1) satisfies

N(α) = n i.e. αα′ = n⇔ 2R = 2r S1 + S ′
1
= s1 . . . 2T1 = t1 . . . (2)

Thus the number of α satisfying αα′ = n is 4 times the number of α
satisfying (2) subject to (1′) (4 choices of ε1)

There are no solutions unless the ti are all even.

If the ti are all even then the T ’s are unique and R is unique.

For S1 we have s1 + 1 choices and then S ′
1
is uniquely determined.

Therefore the number of choices is (s1 +1)(s2 +1) . . . (sµ+1) therefore
r(n) = 4(s1 + 1)(s2 + 1) . . . (sµ + 1).
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