THEORY OF NUMBERS GAUSSIAN INTEGERS

 $\alpha = a + ib$, a b are rational integers.

Conjugate of $\alpha : \alpha' = a - ib$

Norm of $\alpha = N(\alpha) = \alpha \alpha'$

(i) $N(\alpha)$ is a rational integer.

(ii) $N(\alpha) \ge 0$ equality $\alpha = 0$.

(iii)
$$N(\alpha\beta) = N(\alpha)N(\beta)$$
 so $\mu|\nu \Rightarrow N(\mu)|N(\nu)$

Unit: ε such that ε , ε^{-1} are both gaussian integers, $\varepsilon|\alpha$ for all α .

There are exactly 4 units ± 1 $\pm i$

If $\alpha_1 = \varepsilon \alpha$ we say α_1 is associated to α .

Gaussian Prime: π $N(\pi) > 1$, which has no divisors other than units or associates. If $N(\alpha) = p$ then α is G-prime, but the converse is not necessarily true.

Theorem (Euclidean Algorithm) Suppose α , β are G-integers, $\beta \neq 0$

$$\exists \mu$$
, λ such that $\alpha = \mu \beta + \lambda \ N(\lambda < N(\beta))$

Proof $\frac{\alpha}{\beta} = x + iy \ x, y \text{ rational.} \ \exists \text{ rational integers } u, \ v \text{ such that } |x - v| \le \frac{1}{2} |y - v| \le \frac{1}{2}$

Write $\mu = u + iv \lambda = \alpha - \mu\beta$

$$N(\lambda) = N(\alpha - \mu\beta)$$

$$= |\alpha - \mu\beta|^2$$

$$= |\beta|^2 \left| \frac{\alpha}{\beta} - \mu \right|^2$$

$$= |\beta|^2 \left\{ (x - u)^2 + (y - v)^2 \right\}$$

$$\leq \frac{1}{2} |\beta|^2 < N(\beta)$$

Theorem (Greatest common denominator) α , β not both zero. $\exists \delta$ such that

(i) $\delta |\alpha; \delta| \beta$

- (ii) $\eta |\alpha; \ \eta |\beta \Rightarrow \eta |\delta$
- (iii) $\exists \lambda \mu$ such that $\delta = \lambda \alpha + \mu \beta$

Proof Consider the set S of all G-integers δ of the form $\lambda \alpha + \mu \beta$.

Let δ be such that $N(\delta)$ is minimal and positive. The proof follows as in the classical case.

Theorem $\pi | \alpha \beta \Rightarrow \pi | \alpha \text{ or } \pi | \beta$.

Proof Suppose π does not divide α then $(\pi, \alpha) = \varepsilon$. $\exists \lambda$, μ such that $\varepsilon = \lambda \pi + \mu \alpha \beta = \lambda \pi \beta + \mu \alpha \beta$ therefore $\pi | \beta$

Theorem (Unique factorisation) Proof analogous to classical case.

Another proof of Fermat's theorem Suppose $p \equiv 1 \mod 4$. $\exists x \text{ such that } x^2 + 1 \equiv 0 \mod p$. $\exists \pi \text{ such that } \pi | p$. π is not associated to p.

For $\pi | x^2 - 1$ and so $\pi | (x+i)(x-i)$ therefore $\pi | x+i$ or $\pi | x-i$.

 π associated to $p \Rightarrow p|x+i$ or p|x-i which are not so therefore $N(\pi)|N(p)=p^2$ So $N(\pi)=1,p,p^2$

 $N(\pi \neq 1 \pi \text{ is prime } N(\pi \neq p^2 \pi \text{ is not associated to } p \text{ therefore } N(\pi) = p.$

If $\pi = a + ib$, $p = a^2 + b^2$.

Theorem The G-primes are

- (i) 1+i
- (ii) $q \equiv -1$ (4)
- (iii) $a + ib \ a > -b > 0 \ a^2 + b^2 = p \ p \equiv 1 \ (4)$

and their associates.

Proof $\pi | N(\pi) = p_1 \dots p_{\nu}$ therefore every G-prime divides a rational prime.

- (i) N(1+i)=2
- (ii) $q \equiv -1$ (4) $\pi | q \Rightarrow N(\pi) | N(q) = q^2$ therefore $N(\pi) = 1, q$ or q^2 . $N(\pi \neq 1 \pi \text{ is prime } N(\pi) \neq q \text{ by Fermats theorem therefore } N(\pi) = q^2 \text{ therefore } \pi \text{ is associated to } q.$
- (iii) $p \equiv 1$ (4) p = (a+ib)(a-ib) (Fermat) = -i(a+ib)(b+ia)a+ib, b+ia are both q-prime as their norms are equal to p.

Theorem Suppose n > 1 and suppose $n = 2^r p_1^{s_1} \dots p_{\mu}^{s_{\mu}} q_1^{t_1} \dots q_{\nu}^{t_{\nu}}$ where $p_i \equiv 1 \mod 4$ $q_i \equiv -1 \mod 4$.

If r(n) is the number of representations of n as a sum of two squares then

$$r(n) = \begin{cases} 0 & \text{if the } t\text{'s are not all even} \\ 4(s_1 + 1 \dots (s_{\mu} + 1) & \text{is the } t\text{'s are all even} \end{cases}$$

Note If
$$X(d) = \begin{cases} = 1 & d \equiv 1 & (4) \\ -1 & d \equiv -1 & (4) \text{ then } r(n) = 4 \sum_{d|n} X(d) \text{ so } \\ 0 & d \equiv 0 & (2) \end{cases}$$

Proof We look for the number of G-integers for which $N(\alpha) = n$

Now
$$n = \varepsilon (1+i)^{2r} \pi_1^{s_1} \pi_1^{s_1} \dots \pi_{\mu}^{s_{\mu}} \pi_{\mu}^{s_{\mu}} q_1^{t_1} \dots q_{\nu}^{t_{\nu}}$$

Since
$$2 = -i(1+i)^2$$
 and $p \equiv 1$ (4) $\Rightarrow p = \pi \pi'$.

Now suppose $N(\alpha) = n$. Then $\alpha | n$ since $\alpha | N(\alpha)$ therefore α is of the form

$$\alpha = \epsilon_1 (1+i)^R \pi_1^{S_1} \pi_1^{S_1'} \dots q_1^{T_1} \dots$$
 (1)

where
$$0 \le R \le 2r \ 0 \le S_1 \le s_1 \ 0 \le S'_1 \le s_1 \dots) \le T_1 \le t_1 \dots (1')$$

A number α of the form (1) satisfies

$$N(\alpha) = n$$
 i.e. $\alpha \alpha' = n \Leftrightarrow 2R = 2r S_1 + S_1' = s_1 \dots 2T_1 = t_1 \dots (2)$

Thus the number of α satisfying $\alpha \alpha' = n$ is 4 times the number of α satisfying (2) subject to (1') (4 choices of ϵ_1)

There are no solutions unless the t_i are all even.

If the t_i are all even then the T's are unique and R is unique.

For S_1 we have $s_1 + 1$ choices and then S_1' is uniquely determined. Therefore the number of choices is $(s_1 + 1)(s_2 + 1) \dots (s_{\mu} + 1)$ therefore $r(n) = 4(s_1 + 1)(s_2 + 1) \dots (s_{\mu} + 1)$.