THEORY OF NUMBERS
GAUSSIAN INTEGERS

o = a +1b, a b are rational integers.
Conjugate of a : o/ = a — ib
Norm of a = N(a) = ad/

(i) N(«) is a rational integer.

(ii) N(a) > 0 equality< o = 0.

(i) N(aB) = N(a)N() so sl = N(u)|N ()

Unit: e such that e, ¢! are both gaussian integers, ¢|a for all a.

There are exactly 4 units +1 =41

If oy = e we say « is associated to a.

Gaussian Prime: © N(m) > 1, which has no divisors other than units or

associates. If N(a) = p then «a is G-prime, but the converse is not necessarily
true.

Theorem (Euclidean Algorithm) Suppose a, [ are G-integers, 3 # 0
p, A such that a = puf+ X N(A < N(pB)

Proof § =z + iy ,y rational. 3 rational integers u, v such that |z —v| <
sly—vl<3
Write p = u+iv A = a — uf

N() = N(a- pp)

o — pBf?
o 2
= |B)?|= —
B \5 —#
= 18P {e -+ (y -0’}
1
< SloP < N ()
Theorem (Greatest common denominator) «, ( not both zero. 3dsuch
that
(i) dla; 015



(ii) nles nlB = nlé
(iii) IAp such that 6 = da + pf
Proof Consider the set S of all G-integers ¢ of the form Ao + pg.

Let 6 be such that N(¢) is minimal and positive. The proof follows as
in the classical case.

Theorem 7|af = 7|« or 7|f.

Proof Suppose 7w does not divide « then (7,«) = €. I\, p such that ¢ =
AT+ pa B = A + paf therefore 7|3

Theorem (Unique factorisation) Proof analogous to classical case.

Another proof of Fermat’s theorem Suppose p = 1 mod 4. dz such
that 22 + 1 = 0 mod p. I such that 7|p. 7 is not associated to p.

For m|z? — 1 and so 7|(x + i)(z — i) therefore |z + i or 7|z — 1.

7 associated to p = p|r + i or plx — i which are not so therefore
N(m)|N(p) = p* So N(n) =1, p, p?

N(m # 1 7 is prime N(m # p* 7 is not associated to p therefore
N(rm) = p.

If 7 =a+ib, p=a®+ b

Theorem The G-primes are

(i) 1+
(i) 4= 1 (1
(iii) a+iba>—-b>0a>+0>=pp=1(4)

and their associates.

Proof 7|N(7) = p;...p, therefore every G-prime divides a rational prime.

(i) N(1+i)=2
(ii) ¢ = —1 (4) 7|g = N(7)|N(q) = ¢* therefore N(7) =1,q or ¢*.

N(m # 1 7 is prime N(m) # ¢ by Fermats theorem therefore
N(m) = ¢* therefore 7 is associated to q.

(iii) p=1(4)
p = (a+ib)(a —ib) (Fermat) = —i(a + ib)(b + ia)
a + b, b+ ia are both g-prime as their norms are equal to p.
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Theorem Suppose n > 1 and suppose n = 2"py" ... py rgit ... g where p; =
1 mod 4 ¢; = —1 mod 4.

If r(n) is the number of representations of n as a sum of two squares
then

r(n) = 0 if the ¢’s are not all even
| 4(si+1...(s,+1) isthet’s are all even

=1 d= (4)
Note If X(d)=4q —1 d=-1 (4) thenr(n)=4%,,X(d) so
0 d=0 (2

r(n) < 4d(n)
Proof We look for the number of G-integers for which N(a) =

Now n = e(1+ i) mi'a') . owien’rglt .. gl
Since 2= —i(l+i)? andp=1 (4) = p=rnr’.

Now suppose N(a) = n. Then a|n since a|N(« therefore « is of the
form

(1+2)R7rfl7rls g (1)

WhereOSRSQTOS&SSlOgS{§51)§T1§t1 (1’)

A number « of the form (1) satisfies

N(a)=nie ad =n<2R=2rS1+ 5 =s1... 21 =t1... (2)

Thus the number of « satisfying aa’ = n is 4 times the number of «
satisfying (2) subject to (1’) (4 choices of €;)

There are no solutions unless the t; are all even.
If the t; are all even then the T’s are unique and R is unique.

For S; we have s; + 1 choices and then S| is uniquely determined.
Therefore the number of choices is (s; +1)(s2+1)... (s, +1) therefore
r(n) =4(s1+1)(so+1)... (s, + 1).



