THEORY OF NUMBERS
CONGRUENCES

A reduced set of residues (mod m) is a set of ¢(m) numbers, one from each
of the residue classes relatively prime to m.
eg. m=10C.SR=0 +1 +£2 £3 +4 £5R.S.R=4+1 +3

Theorem Suppose (k, m) = 1 then if 2 runs through a C.S.R. or R.S.R. so
does kx

Proof (i) kxz takes m values and no two are congruent mod m since kx; =
kxy = x1 = x5 as (k, m) =1

(ii) ka takes ¢(m) values, mutually uncongruent mod m, as m (i), and
(kx, m) = (z, m)=1as (k, m)=1.

Theorem (Fermat-Euler) a*™ =1 mod m if (a, m) = 1

Proof Let x1,23...740m) be a R.S.R. mod m. By the previous theorem,
ary,ary,...aTem) is a R.S.R mod m. Hence these numbers are con-
gruent to Tz ... Ty in some order. Therefore

AT1ATs . . . ATh(m) = T1T2 - . . To(m) (M)

Therefore a?™ = 1

Corollary a? ! =1 mod p if a Z 0 mod p

a? = a mod p for all a.

Linear congruences ax = b mod m (a Z 0 mod m). N.S.C. for solubility
are the N.S.C. for integral solutions x, y of ax —my = b i.e. (a, m)|b.

General solution Suppose zg, ¥y is a particular solution of ax — my = b
and x, y the general solutions therefore

a(zo —x) —m(yo —y) =0 (1)
therefore m/|z — xo where m’ = @y and a'ly — yo where a’ = @
therefore
r=x0+mt
y = yo —|— a’l

Substituting m(1) gives t = [, therefore



x=x9+m't
y=yo+at
giving different solutions for ¢ = 1,2,... 7% all other solutions belong-
ing to one of these residue classes mod m therefore 3(a, m) solutions.
The Chinese Remainder Theorem If every pair from (my, ..., m,)isrel-
atively prime, the simultaneous congruences
r = a; mod mq,...x = a, mod m,
have a solution which is unique mod my, ... m,.
Proof Put ;
[Ty mu

m;

M; =

i=1,2,....7

Choose &; such that M;&; = a; mod m;
This is possible since (M, m;) = 1. Note that M;; = 0 mod m;, i # j
Take v = M &+ Moo +. . .+ M,&,. Thenx = a; modm; j =1,2,...7.

Suppose xl, To are solutions. Then x1 = a; mod m; i =1,2,...7, x5
a; mod m; 1 =1,2,...,r. Therefore 1 — zo = 0 mod m;, i 1 2,.
therefore z; — z9 = O mod miMms ... M,

< I

Corollary The congruence P(xz) =0 mod m is equivalent to the simultane-
ous congruences P(x) =0 mod p;* i =1,2,.

Theorem Suppose (a, b) = 1.

Suppose x runs through a { ?S’}]%{ } mod a

mod ab.

C.

R

C.S.R.

Suppose y runs through a { RSR } mod b
Then bx + ay runs through a {

R S R }
Proof C.S.R

There are ab values of bx 4+ ay and no two are congruent mod ab, for if
br + ay = bx’ + ay’ mod ab then bx = bz’ mod a and ay = ay’ mod b
since (ab) = 1 therefore x = 2’ mod a and y =y’ mod b.

R.S.R

No two values of bz + ay are congruent mod ab as above. All values
of bx + ay are relatively prime to ab, for suppose plaz + by| and p|ab.
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Then pla or p|b so suppose pla. p b as (a, b) = 1 therefore p|z. But
(a, x) =1as z € R.S.R. mod a

Conversely every number m relatively prime to ab is congruent to some
bx 4+ ay mod ab for if (ab, m) = 1 choose =, y so that

br=m moda [ unique as (a, b) =1 and (a, z) =1

ay=m mod b | unique as (a, b) =1 and (b, y) = 1.

Therefore bz + ay = m mod a and mod b and so mod ab as (a,b) = 1.
Corollary 7(a, b) = ¢(a)p(b) if (a, b) = 1.
Wilson’s Theorem p is prime < (p — 1)! = —1 mod p.

Proof (i) (p—1)!=—1mod p= (p —1)! + 1 = np for some integer n.
Now none of the numbers 2,3,...p — 1 divides (p — 1)! + 1, for
each of them leaves remainder 1 and so 2,3,...p—1 do not divide
p. So p is prime.

(ii) p =2 gives 1! = —1 mod 2, p = 3 gives 2! = —1 mod 3.
Suppose p > 3. For every x # 0 mod p3 a unique z’ mod p such
that 22’ = 1 mod p. If we also have z = 2’ mod p then 22 = 1
mod p.
i.e. pl#?2 —1ie.plr — 1 or x + 1 therefore x = +1 mod p.

Thus in the product 2,3, ...p — 2 the factors can be associated in
pairs, the product of each pair being = 1 mod p.

Hence (p —2)! = 1 mod p therefore (p — 1) =p—1= —1 mod p.
The residue classes mod p form a finite field.

Definition Let (a,m) = 1. Suppose f is the least positive integer for which
a’ = 1 mod m. Then we say that a belongs to the exponent f mod m.

Note that a®* = 1 mod m < f|s

(i) fls=s=qf
a® = (a’)9 =19=1 mod m.
(ii) ¢®* =1 mod m
s=qf+ro<r<f
Therefore (a’)?.a” = 1 mod m
therefore a” = 1 mod m
therefore r = 0 by definition of f and sof|s
In particular f|¢(m) since a®™ =1 mod m.



Theorem Let p be prime and let f be a divisor of p — 1. Then among a
R.S.R. mod p there are exactly ¢(f) elements belonging to the exponent
f mod p.

In particular there are 7m(p — 1) elements belonging to the exponent
p — 1 mod p: sich an element is known as a primitive root mod p.

Proof Let ¢(f) be the number of elements belonging to the exponent f. We
prove

(1) ¥(f) =0or ¢(f)
Suppose f|p — 1 and suppose ¢(f) # 0. Then Ja, belonging to
exponent f. 1,a,a®...a’~! are uncongruent mod p, but all satisfy
2/ =1 mod p. So they are all solutions of z/ = 1

Thus the numbers belonging to exponent f are to be found among
these.

We show that a” belongs to exp f < (v, f = 1. Suppose a”
belongs to exp f'(: f'|f)
(i) (v, f) =1 Suppose (a”)/ =1 mod p then a”f = 1 mod p but
a belongs to exp f and so f|vf’ therefore ||f' so f = f'.
(i) (v, f)=d>1
(a”)§ = (af)@ = 1 mod p since a belongs to exp f.
Thus a” doesn’t belong to exp f since g < f. Hence ¢(f) =
o(f)-

We now prove

(2) Zf|p—l ¢(f) =p—1
Every residue # 0 mod p belongs to exactly one exponent f and
a’ =1 mod p < flp — 1 for a?~! = 1 by Fermats theorem.

But Yp,_10(f) =p—1

So g1 [0(f) = v ()] = 0, [¢(f) —¥(f)] = 0 by (1) therefore
o(f) = v(f).

Indices Suppose g is a primitive root mod p, p > 2.
Then ¢° ¢, g%, ..., g?2 constitute an R.S.R. mod p.

For each a satisfying (a, p) = 13 a unique integer r such that ¢" = a
modp0<r<p-—2

We write r = md,a.

Then a = b mod p & mdya = mdgb



mdga" = nmdga
mdgab = mdgya + mdyb » mod p — 1
mdgsa = mdyg; mdya

mdl =0 B B )
md — :p%l,forgPAEOSO (gpz —1) (ng—i—l) =0but g7 #1
as g is a primitive root so gp5_1 =-1

Example

p=13 g=2 N Index

1 0
2 1
4 2
8 3
3 4
6 5
12 6
11 7
9 8
5 9
10 10
7 11

s

Example "I n

0 modpifsZ0modp—1
—1 modpifs=0modp—1



