## Question

Describe briefly the behaviour of a particle moving in a simple random walk between two reflecting barriers.
Find the expected number of steps until the particle, initially at position $j$, reaches the upper barrier for the first time for the case $p \neq q, p$ and $q$ nonzero.
Calculate the expected number of consecutive steps for which the particle remains on the upper barrier during a visit.

## Answer

Let $E_{j}$ be the expected number of steps until the particle reaches the upper barrier for the first time, starting at $j$. (Barriers at $a$ and $-b$ )
$E_{j}=p\left(1+E_{j+1}\right)+q\left(1+E_{j-1}\right)+(1-p-q)\left(1+E_{j}\right)$
which rearranges to give
$p E_{j+1}-(p+q) E_{j}+q E_{j-1}=-1 \quad-b<j<a$
The auxiliary equation is $p \lambda^{2}-(p+q) \lambda+q=0$

$$
\text { i.e. }(\lambda+1)(p \lambda-q)=0 \Rightarrow \lambda=1, \frac{q}{p}
$$

A particular solution is $E_{j}=c j$ where
$p c(j+1)-(p+q) c j+q c(j-1)=-1$
$\Rightarrow c(p-q)=-1$ so $c=\frac{1}{(q-p)}$
Thus the general solution is

$$
E_{j}=A+B\left(\frac{q}{p}\right)^{j}+\frac{j}{q-p}
$$

The boundary conditions give
$E_{a}=0 \quad$ so $\quad A+B\left(\frac{q}{p}\right)^{a}+\frac{a}{q-p}=0$,
$E_{-b}=p\left(1+E_{-b+1}\right)+(1-p)\left(1+E_{-b}\right) \Rightarrow p E_{-b+1}-p E_{-b}+1=0$
Substituting from the general solution gives

$$
\begin{aligned}
B & =-\left(\frac{q}{p}\right)^{b} \frac{q}{(q-p)^{2}} \quad A=-\frac{a}{q-p}+\left(\frac{q}{p}\right)^{a+b} \frac{q}{(q-p)^{2}} \\
E_{j} & =-\frac{a}{q-p}+\left(\frac{q}{p}\right)^{a+b} \frac{q}{(q-p)^{2}}-\left(\frac{q}{p}\right)^{b+j} \frac{q}{(q-p)^{2}}+\frac{j}{q-p}
\end{aligned}
$$

Let $N=$ number of steps on the upper barrier during a visit.

$$
\begin{aligned}
P(N=n) & =(1-q)^{n} \cdot q \\
E(N) & =\sum_{n=0}^{\infty} n(1-q)^{n} \cdot q=\frac{1-q}{q}
\end{aligned}
$$

(Summing the arithmetic-geometric series.)

