Question

Explain what is meant by a population with size varying according to a generalized birth-death process having birth and death rates given by the functions $\Gamma_{1}(n)$ and $\Gamma_{2}(n)$ respectively. A population of this kind has size varying between N and M and

$$
\Gamma_{1}(n)=\lambda(N-n) n \quad \Gamma_{2}(n)=\mu(n-M) n
$$

where $N>M>0$ and λ and μ are positive constants. Show that the probability $p_{n}(t)$ that the population size is n at time t satisfies the following differential-difference equation for $n=M+1, M+2, \ldots, N-1$.

$$
\begin{aligned}
p_{n}^{\prime}(t)= & \lambda(N-n+1)(n-1) p_{n-1}(t)+\mu(n+1-M)(n+1) p_{n+1}(t) \\
& -[\lambda(N-n) n+\mu(n-M) n] p_{n}(t) .
\end{aligned}
$$

Obtain corresponding equations for $p_{N}^{\prime}(t)$ and $p_{M}^{\prime}(t)$.
If $X(t)$ denotes the population size at time t show that

$$
\frac{d}{d t} E\{X(t)\}=(M \mu+N \lambda) E\{X(t)\}-(\mu+\lambda) E\left\{[X(t)]^{2}\right\}
$$

where $E\{X(t)\}$ denotes the expected value of $X(t)$.

Answer

Suppose we have a population of individuals reproducing or dying independently of one another. Suppose the size of the population at time t is $X(t)$. Then a generalized birth - death process with rates $\Gamma_{1}(n)$ and $\Gamma_{2}(n)$ is defined by the probabilities:

$$
\begin{aligned}
& P(X(t+\delta t)=n+1 \mid X(t)=n)=\Gamma_{1}(n) \delta t+o(\delta t) \\
& P(X(t+\delta t)=n-1 \mid X(t)=n)=\Gamma_{2}(n) \delta t+o(\delta t) \\
& P(X(t+\delta t)=n \mid X(t)=n)=1-\left(\Gamma_{1}(n)+\Gamma_{2}(n)\right) \delta t+o(\delta t)
\end{aligned}
$$

For $M<n<N$ we have

$$
\begin{aligned}
p_{n}(t+\delta t) & =P(X(t+\delta t)=n \mid X(t)=n+1) P(X(t)=n+1) \\
& +P(X(t+\delta t)=n \mid X(t)=n-1) P(X(t)=n-1) \\
& +P(X(t+\delta t)=n \mid X(t)=n) P(X(t)=n) \\
& =\left(\Gamma_{2}(n+1) \delta t+o(\delta t)\right) p_{n+1}(t) \\
& +\left(\Gamma_{1}(n-1) \delta t+o(\delta t)\right) p_{n-1}(t) \\
& +\left(1-\left(\Gamma_{1}(n)+\Gamma_{2}(n) \delta t+o(\delta t)\right) p_{n}(t)\right.
\end{aligned}
$$

Thus

$$
\begin{aligned}
\frac{p_{n}(t+\delta t)-p_{n}(t)}{\delta t} & =\Gamma_{2}(n+1) p_{n+1}(t)+\Gamma_{1}(n-1) p_{n-1}(t) \\
& -\left(\Gamma_{1}(n)+\Gamma_{2}(n)\right) p_{n}(t)+\frac{o(\delta t)}{\delta t}
\end{aligned}
$$

Thus

$$
\begin{align*}
p_{n}^{\prime}(t) & =\Gamma_{2}(n+1) p_{n+1}(t)+\Gamma_{1}(n-1) p_{n-1}(t)-\left(\Gamma_{1}(n)-\Gamma_{2}(n)\right) p_{n}(t) \\
& =\mu(n+1-M)(n+1) p_{n+1}(t)+\lambda(N-n+1)(n-1) p_{n-1}(t) \\
& -[\lambda(N-n) n+\mu(n-M) n] p_{n}(t) \tag{1}
\end{align*}
$$

By reasoning similar to that above we also obtain:

$$
\begin{align*}
p_{N}^{\prime}(t) & =\lambda(N-1) p_{N-1}(t)-\mu(N-M) N p_{N}(t) \tag{2}\\
p_{M}^{\prime}(t) & =\mu(M+1) p_{M+1}(t)-\lambda(N-M) M p_{M}(t) \tag{3}
\end{align*}
$$

Now $\frac{d}{d t} E(X(t))=\sum_{n=M}^{N} n p_{n}^{\prime}(t)$, so summing (1), (2) and (3) gives:

$$
\begin{gathered}
\sum_{n=M}^{N-1} \mu(n+1-M) n(n+1) p_{n+1}(t)-\sum_{n=M}^{N} n(\lambda(N-n) n+\mu(n-M) n) p_{n}(t) \\
+\sum_{n=M+1}^{N} \lambda(N-n+1) n(n-1) p_{n-1}(t)
\end{gathered}
$$

Changing the index of summation in the first and last sums gives

$$
\begin{aligned}
& \sum_{\substack{n=M+1 \\
N+1}} \mu(n-M)(n-1) n p_{n}(t) \quad \leftarrow \text { summand }=0 \text { for } n=M \\
& +\sum_{n=M}^{N-1} \lambda(N-n) n(n+1) p_{n}(t) \leftarrow \text { ditto for } n=N \\
& -\sum_{n=M}^{N} n(\lambda(N-n) n+\mu(n-M) n) p_{n}(t) \\
& \sum_{n=M}^{N} p_{n}(t) \times K, \quad \text { where }
\end{aligned}
$$

$$
K=\mu(n-M)\left(n^{2}-n\right)-\lambda n^{2}(N-n)-\mu n^{2}(n-M)
$$

$$
+\lambda(N-n)\left(n^{2}+n\right)
$$

$$
=(\mu M+\lambda N) n-(\mu+\lambda) n^{2}
$$

Thus $\frac{d}{d t} E\{X(t)\}=(M \mu+N \lambda) E\{X(t)\}-(\mu+\lambda) E\left\{[X(t)]^{2}\right\}$

