Question

In a single server queue, the time taken to serve a customer is exponentially distributed. New customers are discouraged by the sight of a long queue. If the queue size, including the customer being served, is n at time t, the probability of a new customer joining the queue in the time interval $(t, t+\delta t]$ is

$$
\frac{\alpha}{n+1} \delta t+o(\delta t)
$$

for some constant $\alpha>0$. The probability of more than one customer joining the queue in this time interval is $o(\delta t)$.
Obtain the forward differential equations for the probability that the queue size is j after time t. Show that the equilibrium distribution of the process is a Poission distribution and find the proportion of time that the queue is empty.

Answer

If the queue size $N(t)=n \neq 0$ then the queue length changes in $(t, t+\delta t]$ by

$$
\begin{array}{rll}
+1 & \text { with probability } & \frac{\alpha}{n+1} \delta t+o(\delta t) \\
-1 & \text { with probability } & \mu \delta t+o(\delta t) \\
0 & \text { with probability } & \left(1-\left(\frac{\alpha}{n+1}+\mu\right) \delta t\right)+o(\delta t)
\end{array}
$$

If $N(t)=0$ then the queue length changes by

$$
\begin{array}{rll}
+1 & \text { with probability } & \alpha \delta t+o(\delta t) \\
0 & \text { with probability } & 1-\alpha \delta t+o(\delta t)
\end{array}
$$

Let $\left.p_{n}(t)=p(N(t)=n)\right)$
$p_{0}(t+\delta t)=p_{0}(t)(1-\alpha \delta t+o(\delta t))+p_{1}(t)(\mu \delta t+o(\delta t))$ giving $p_{0}^{\prime}(t)=-\alpha p_{0}(t)+\mu p_{1}(t)$

For $n=1,2, \ldots$

$$
\begin{aligned}
p_{n}(t+\delta t) & =p_{n}\left(1-\left(\frac{\alpha}{n+1}+\mu\right) \delta t+o(\delta t)\right) \\
& +p_{n+1}(\mu \delta t+o(\delta t))+p_{n-1}(t)\left(\frac{\alpha}{n} \delta t+o(\delta t)\right) \\
\text { giving } p_{n}^{\prime}(t) & =-\left(\frac{\alpha}{n+1}+\mu\right) p_{n}(t)+\mu p_{n+1}(t)+\frac{\alpha}{n} p_{n-1}(t)
\end{aligned}
$$

The equilibrium distribution satisfies:

$$
\begin{aligned}
& 0=-\alpha \pi_{0}+\mu \pi_{1} \\
& 0=-\left(\frac{\alpha}{n+1}+\mu\right) p_{n}(t)+\mu \pi_{n+1}+\frac{\alpha}{n} \pi_{n-1}
\end{aligned}
$$

Recursive Solution of equilibrium equations:

$$
\begin{aligned}
0 & =\alpha \pi_{0}+\mu \pi_{1} \quad \text { so } \pi_{1}=\frac{\alpha}{\mu} \pi_{0} \\
n=1: \quad 0 & =-\left(\frac{\alpha}{2}+\mu\right) \pi_{1}+\mu \pi_{2}+\alpha \pi_{0} \\
& =-\left(\frac{\alpha}{2}+\mu\right) \frac{\alpha}{\mu} \pi_{0}+\mu \pi_{2}+\alpha \pi_{0} \\
\pi_{2} & =\left(\frac{\alpha}{\mu}\right)^{2} \frac{1}{2} \pi_{0} \\
n=2: \quad 0 & =-\left(\frac{\alpha}{3}+\mu\right) \pi_{2}+\mu \pi_{3}+\frac{\alpha}{2} \pi_{1} \\
& =-\left(\frac{\alpha}{3}+\mu\right)\left(\frac{\alpha}{\mu}\right)^{2} \frac{1}{2} \pi_{0}+\mu \pi_{3}+\frac{\alpha^{2}}{2 \mu} \pi_{0} \\
\pi_{3} & =\left(\frac{\alpha}{\mu}\right)^{3} \cdot \frac{1}{3 \cdot 2} \pi_{0}
\end{aligned}
$$

Inductive step

$$
\begin{aligned}
0= & -\left(\frac{\alpha}{n+1}+\mu\right) \pi_{n}+\mu \pi_{n+1}+\frac{\alpha}{n} \pi_{n-1} \\
= & -\left(\frac{\alpha}{n+1}+\mu\right)\left(\frac{\alpha}{\mu}\right)^{n} \cdot \frac{1}{n!} \pi_{0}+\mu \pi_{n+1} \\
& +\frac{\alpha}{n} \cdot\left(\frac{\alpha}{\mu}\right)^{n-1} \cdot \frac{1}{(n-1)!} \pi_{0}
\end{aligned}
$$

giving

$$
\pi_{n+1}=\left(\frac{\alpha}{\mu}\right)^{n+1} \cdot \frac{1}{(n+1)!} \pi_{0}
$$

Thus solving recursively gives

$$
\pi_{n}=\frac{\alpha^{n}}{\mu^{n} n!} \pi_{0}
$$

We require $\sum \pi_{n}=1$ so $\pi_{0}=e^{-\frac{\alpha}{\mu}}$ and $\pi_{n}=e^{-\frac{\alpha}{\mu}} \frac{\left(\frac{\alpha}{\mu}\right)^{n}}{n!}$ i.e. we have a Poisson distribution with parameter α / μ The proportion of time the queue is empty is $\pi_{0}=e^{-\frac{\alpha}{\mu}}$.

