Question

(a) Give a set of axioms for a Poisson process with constant rate λ. State the distribution of the number of events, $N(t)$, in a time interval of length t units.

Show that for the overlapping time intervals $(0, t]$ and $(0, s]$ where $s<t$,

$$
P(N(s)=i \mid N(t)=j)=\binom{j}{i}\left(\frac{s}{t}\right)^{i}\left(1-\frac{s}{t}\right)^{j-i},
$$

where

$$
\binom{j}{i}=\frac{j!}{i!(j-i)!}
$$

(b) An insurance company receives claims at times $t_{1}, t_{2}, t_{3}, \ldots$ which are points in a Poisson process with rate λ per week such that $0<t_{1}<$ $t_{2}<\ldots$. Find the probability distribution of the time until the n-th claim after the start of the financial year.
The claims at times $t_{1}, t_{2}, t_{3}, \ldots$ are $Y_{1}, Y_{2}, Y_{3}, \ldots$ respectively, which are independent random variables each having the same probability generating function $A(z)$. Show that the probability generating function for the total amount of claims which the company has to meet in the first t weeks of the financial year is

$$
e^{\lambda t A(z)-\lambda t} .
$$

Answer

(a) Axioms for a Poisson process.
(i) The numbers of events in disjoint time intervals are independent.
(ii) $P(1$ event in $(t, t+\delta t])=\lambda \delta t+o(\delta t)$ as $\delta t \rightarrow 0$
$P(0$ events in $(t, t+\delta t])=1-\lambda \delta t+o(\delta t)$ as $\delta t \rightarrow 0$
$\mathrm{N}(\mathrm{t})$ is $\operatorname{Poisson}(\lambda t)$. So $P(N(t)=n)=\frac{(\lambda t)^{n} e^{-\lambda t}}{n!} \quad n=0,1,2, \ldots$

$$
P(N(s)=i \mid N(t)=j)=\frac{P(N(s)=i \& N(t)=j)}{P(N(t)=j)}
$$

$$
\begin{aligned}
& =\frac{P(N(s)=i \& N(9 s, t])=j-i)}{P(N(t))=j} \\
& =\frac{\frac{(\lambda s)^{i} e^{-\lambda s}}{i!} \times \frac{(\lambda(t-s))^{j-i} e^{-\lambda(t-s)}}{(j-i)!}}{\frac{(\lambda t)^{j} e^{-\lambda t}}{j!}} \\
& =\frac{j!}{i!(j-i)!} \cdot \frac{s^{i}(t-s)^{j-i}}{t^{j}} \\
& =\binom{j}{i}\left(\frac{s}{t}\right)^{i}\left(1-\frac{s}{t}\right)^{j-i}
\end{aligned}
$$

(b) Let $\mathrm{T}=$ time until n-th claim.

$$
\begin{aligned}
P(T \leq t) & =1-P(T>t) \\
& =1-P(N(t)<n) \\
& =1-\sum_{j=0}^{n-1} p_{j}(t)
\end{aligned}
$$

To find the p.d.f. we need

$$
\begin{aligned}
\frac{d}{d t} P(T \leq t) & =-\sum_{j=0}^{n-1} p_{j}^{\prime}(t) \\
& =-\lambda e^{-\lambda t}-\sum_{j=1}^{n-1} \lambda e^{-\lambda t}\left(\frac{(\lambda t)^{j-1}}{(j-1)!}-\frac{(\lambda t)^{j}}{j!}\right) \\
& =\lambda e^{-\lambda t} \frac{(\lambda t)^{n-1}}{(n-1)!} \quad \text { i.e. } \Gamma(n, \lambda)
\end{aligned}
$$

The total amount of claims in the first t weeks is

$$
X(t)=Y_{1}+Y_{2}+. .+Y_{N(t)}
$$

Its p.g.f. is

$$
\begin{aligned}
\sum_{j=0}^{\infty} P(X(t)=j) z^{j} & =\sum_{j=0}^{\infty} \sum_{n=0}^{\infty} z^{j} P(X(t)=j \mid N(t)=n) P(N(t)=n) \\
& =\sum_{j=0}^{\infty} \sum_{n=0}^{\infty} z^{j} P\left(Y_{1}+\ldots+Y_{n}=j\right) \frac{(\lambda t)^{n} e^{-\lambda t}}{n!} \\
& =\sum_{n=0}^{\infty}\left(\sum_{j=0}^{\infty} z^{j} P\left(Y_{1}+\ldots+Y_{n}=j\right)\right) \frac{(\lambda t)^{n} e^{-\lambda t}}{n!}
\end{aligned}
$$

$$
\begin{aligned}
& =e^{-\lambda t} \sum_{n=0}^{\infty}(A(z))^{n} \cdot \frac{(\lambda t)^{n}}{n!} \\
& =\exp (\lambda t A(z)-\lambda t)
\end{aligned}
$$

