Question

Define the terms equilibrium distribution and stationary distribution for a Markov chain. Explain how they are related for a finite Markov chain.
Consider the following experiment. Initially 6 fair coins are tossed and X_{0} is the total number of heads obtained. One coin is then selected at random and turned over and X_{1} is the total number of heads now showing. A coin is again selected at random and turned over giving X_{2} heads, and so on.
Discuss briefly why $\left\{X_{k}\right\}, k=0,1,2, \ldots$, forms a Markov chain on the states $0,1,2, \ldots, 6$. Write down the initial probabilities of occupying the states and the transition probability matrix.
Obtain the stationary distribution of the Markov chain. Hence find the probability distribution of $X_{k} \quad(k=1,2,3, \ldots)$.
If the number of heads showing initially is known to be 2 , calculate the probability distribution for the number of heads showing after 2 coins have been turned over.

Answer

A Markov chain with transition matrix P has an equilibrium distribution if $\mathbf{p}^{(n)}=\mathbf{p}^{0} P^{n} \rightarrow \boldsymbol{\pi}$ as $n \rightarrow \infty$, independently of the initial distribution $\mathbf{p}^{(0)}$.
$\boldsymbol{\pi}^{*}$ is a stationary distribution if $\boldsymbol{\pi}^{*} P=\boldsymbol{\pi}^{*}$.
If $\boldsymbol{\pi}$ is an equilibrium distribution then it it is a stationary distribution, but not conversely. An irreducible finite Markov chain with aperiodic states has a unique stationary distribution which is also its equilibrium distribution.
X_{n} depends only on X_{n-1} i.e. how many heads there are at that stage, and not how X_{n-1} has been arrived at. The initial probabilities are

$$
p_{0}=p_{6}=\frac{1}{64} \quad p_{1}=p_{5}=\frac{6}{64} \quad p_{2}=p_{4}=\frac{15}{64} \quad p_{3}=\frac{20}{64}-\text { binomial }
$$

The transition matrix is:
0
1
1
2
3
4
4
5
6 $\left(\begin{array}{lllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{6} & 0 & \frac{5}{6} & 0 & 0 & 0 & 0 \\ 0 & \frac{2}{6} & 0 & \frac{4}{6} & 0 & 0 & 0 \\ 0 & 0 & \frac{3}{6} & 0 & \frac{3}{6} & 0 & 0 \\ 0 & 0 & 0 & \frac{4}{6} & 0 & \frac{2}{6} & 0 \\ 0 & 0 & 0 & 0 & \frac{5}{6} & 0 & \frac{1}{6} \\ 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)$

Note: The Markov chain is irreducible. All states are positive recurrent. All are periodic, with period 2 .

Suppose the stationary distribution is $\left(\pi_{0}, \ldots, \pi_{6}\right)$. Solving $\boldsymbol{\pi}=\boldsymbol{\pi} P$ gives:

$$
\begin{aligned}
& \boldsymbol{\pi}^{*}=\left(\frac{1}{64}, \frac{6}{64}, \frac{15}{64}, \frac{20}{64}, \frac{15}{64}, \frac{6}{64}, \frac{1}{64}\right) \\
& \text { If } \mathbf{p}^{0}=(0,0,1,0,0,0,0) \\
& \mathbf{p}^{(1)}=\left(0, \frac{2}{6}, 0, \frac{4}{6}, 0,0,0\right) \\
& \mathbf{p}^{(2)}=\left(\frac{2}{36}, 0, \frac{22}{36}, 0, \frac{12}{36}, 0,0\right)
\end{aligned}
$$

There is no equilibrium distribution since we have periodicity.
The vector of initial probabilities is the same as $\boldsymbol{\pi}^{*}$. Thus the probability distribution of X_{k} is $\boldsymbol{\pi}^{*} P^{k}=\boldsymbol{\pi}^{*}$.

