QUESTION

(b) Derive the Fourier series for the periodic function $f(t)$ which is defined by
$f(t)=t$ for $-\pi<t \leq \pi, \quad$ and $f(t+2 \pi)=f(t)$ for all t.

ANSWER

(b) Period $=2 \pi$. The function is odd (from the graph) and this can be used to simplify the calculation of coefficients.

$a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) d t=0$, since $\int_{-a}^{a} f(t) d t=0$ when $f(t)$ is odd. $a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos (n t) d t=0$, (integrand is again a odd function).
$b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin (n t) d t$
$=\frac{2}{\pi} \int_{0}^{\pi} f(t) \sin (n t) d t$ (even integrand as product of odd functions)
$=\frac{2}{\pi} \int_{0}^{\pi} t \sin (n t) d t$
$=\frac{2}{\pi}\left\{\left[t\left(-\frac{\cos (n t)}{n}\right)\right]_{0}^{\pi}-\int_{0}^{\pi}-\frac{\cos (n t)}{n} \cdot 1 d t\right\}$
$=\frac{2}{\pi}\left\{-\frac{\pi}{n} \cos (n \pi)+\frac{1}{n}\left[\frac{\sin (n t)}{n}\right]_{0}^{\pi}\right\}$
$=-\frac{2}{n}(-1)^{n}+\frac{2}{\pi n^{2}}(0-0)=\frac{2}{n}(-1)^{n+1}$
Therefore $f(t) \sim \sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n} \sin (n t)$

