QUESTION

(b) Derive the Fourier series for the periodic function f(t) which is defined by

$$f(t) = t$$
 for $-\pi < t \le \pi$, and $f(t + 2\pi) = f(t)$ for all t .

ANSWER

(b) Period= 2π . The function is odd (from the graph) and this can be used to simplify the calculation of coefficients.

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) dt = 0$$
, since $\int_{-a}^{a} f(t) dt = 0$ when $f(t)$ is odd.
 $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt = 0$, (integrand is again a odd function).

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt$$

$$= \frac{2}{\pi} \int_{0}^{\pi} f(t) \sin(nt) dt \quad \text{(even integrand as product of odd functions)}$$

$$= \frac{2}{\pi} \int_{0}^{\pi} t \sin(nt) dt$$

$$= \frac{2}{\pi} \left\{ \left[t \left(-\frac{\cos(nt)}{n} \right) \right]_{0}^{\pi} - \int_{0}^{\pi} -\frac{\cos(nt)}{n} .1 dt \right\}$$

$$= \frac{2}{\pi} \left\{ -\frac{\pi}{n} \cos(n\pi) + \frac{1}{n} \left[\frac{\sin(nt)}{n} \right]_{0}^{\pi} \right\}$$

$$= -\frac{2}{n} (-1)^n + \frac{2}{\pi n^2} (0 - 0) = \frac{2}{n} (-1)^{n+1}$$

Therefore
$$f(t) \sim \sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n} \sin(nt)$$