
QUESTION

(b) Derive the Fourier series for the periodic function f(t) which is defined
by

f(t) = t for −π < t ≤ π, and f(t+ 2π) = f(t) for all t.

ANSWER

(b) Period=2π. The function is odd (from the graph) and this can be used
to simplify the calculation of coefficients.
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