QUESTION

(a) Express -16 in exponential form and hence find all the complex values of $(-16)^{\frac{1}{4}}$, writing your answers in the form $x+j y$.
Display these values on an Argand diagram.
(b) Using Laplace transforms find, with the aid of tables, the solution of the ordinary differential equation

$$
\frac{d x}{d t}+2 x=1
$$

which satisfies the condition $x=2$ when $t=0$.

ANSWER

(a)

$\theta=\pi$ therefore $-16=16 e^{j \pi}=16 e^{j(\pi+2 k \pi)} k=0, \pm 1, \pm 2, \ldots$
so $(-16)^{\frac{1}{4}}=(16)^{\frac{1}{4}} e^{j \frac{(\pi+2 k \pi)}{4}}$
$k=0,2 e^{j \frac{\pi}{4}}=2\left(\cos \frac{\pi}{4}+j \sin \frac{\pi}{4}\right)=2\left(\frac{1}{\sqrt{2}}+j \frac{1}{\sqrt{2}}\right)=\sqrt{2}(1+j)$
$k=1,2 e^{j \frac{3 \pi}{4}}=2\left(\cos \frac{3 \pi}{4}+j \sin \frac{3 \pi}{4}\right)=2\left(-\frac{1}{\sqrt{2}}+j \frac{1}{\sqrt{2}}\right)=\sqrt{2}(-1+j)$
$k=2,2 e^{j \frac{5 \pi}{4}}=2\left(\cos \frac{5 \pi}{4}+j \sin \frac{5 \pi}{4}\right)=2\left(-\frac{1}{\sqrt{2}}-j \frac{1}{\sqrt{2}}\right)=\sqrt{2}(-1-j)$
$k=3,2 e^{j \frac{7 \pi}{4}}=2\left(\cos \frac{7 \pi}{4}+j \sin \frac{7 \pi}{4}\right)=2\left(\frac{1}{\sqrt{2}}-j \frac{1}{\sqrt{2}}\right)=\sqrt{2}(1-j)$

(b) $\frac{d x}{d t}+2 x=1, x=2$ when $t=0$

Taking Laplace transforms $\mathcal{L}\left\{\frac{d x}{d t}+2 x\right\}=\mathcal{L}\left\{\frac{d x}{d t}\right\}+2 \mathcal{L}\{x\}=\mathcal{L}\{1\}$

$$
\begin{aligned}
& \{s X-x(0)\}+2 X=\frac{1}{s} \\
& (s+2) X=\frac{1}{s}+2, X=\frac{1}{(s+2) s}+\frac{2}{s+2} \\
& \frac{1}{s(s+2)}=\frac{A}{s}+\frac{B}{s+2}=\frac{A(s+2)+B s}{s(s+2)} \\
& 1=A(s+2)+B s \\
& s=0,1=2 A, A=\frac{1}{2} \\
& s=-2,1=-2 B, B=-\frac{1}{2}
\end{aligned}
$$

Therefore $X=\frac{\frac{1}{2}}{s}-\frac{\frac{1}{2}}{s+2}+\frac{2}{s+2}=\frac{\frac{1}{2}}{s}+\frac{\frac{3}{2}}{s+2}$
Taking the inverse Laplace transform gives $x(t)=\frac{1}{2}+\frac{3}{2} e^{-2 t}$.

