
QUESTION

(a) Express −16 in exponential form and hence find all the complex values

of (−16) 1
4 , writing your answers in the form x+ jy.

Display these values on an Argand diagram.

(b) Using Laplace transforms find, with the aid of tables, the solution of the
ordinary differential equation

dx

dt
+ 2x = 1

which satisfies the condition x = 2 when t = 0.
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(b)
dx

dt
+ 2x = 1, x = 2 when t = 0

Taking Laplace transforms L
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