## QUESTION

Find the eigenvalues of the matrix

$$
\left(\begin{array}{ccc}
2 & -1 & 2 \\
0 & 3 & 3 \\
0 & 2 & 4
\end{array}\right)
$$

and determine the corresponding eigenvectors.
ANSWER

$$
\left(\begin{array}{ccc}
2 & -1 & 2 \\
0 & 3 & 3 \\
0 & 2 & 4
\end{array}\right)
$$

Eigenvalues satisfy $|A-\lambda I|=0$

$$
\begin{aligned}
\left|\begin{array}{ccc}
2-\lambda & -1 & 2 \\
0 & 3-\lambda & 3 \\
0 & 2 & 4-\lambda
\end{array}\right| & =(2-\lambda)\{(3-\lambda)(4-\lambda)-6\} \\
& =(2-\lambda)\left\{12-7 \lambda+\lambda^{2}-6\right\} \\
& =(2-\lambda)\left(6-7 \lambda+\lambda^{2}\right) \\
& =(2-\lambda)(\lambda-6)(\lambda-1)
\end{aligned}
$$

This is zero if $\lambda=1,2,6$ so these are the eigenvalues.
$\lambda=1$ : Eigenvector satisfies $(A-1 I) \mathbf{x}=0$
$\left(\begin{array}{ccc}1 & -1 & 2 \\ 0 & 2 & 3 \\ 0 & 2 & 3\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$

$$
\begin{array}{r}
x_{1}-x_{2}+2 x_{3}=0 \\
2 x_{2}+3 x_{3}=0 \\
2 x_{2}+3 x_{3}=0
\end{array}
$$

Choose $x_{3}=c, \Rightarrow x_{2}=-\frac{3 c}{2}, \Rightarrow x_{1}=x_{2}-2 x_{3}=-\frac{3 c}{2}-2 c=-\frac{7 c}{2}$
Therefore the eigenvector is $\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{c}-\frac{7 c}{2} \\ -\frac{3 c}{2} \\ c\end{array}\right)$, where $c$ is any constant.
$\lambda=6:$ Eigenvector satisfies $(A-6 I) \mathbf{x}=0$
$\left(\begin{array}{ccc}-4 & -1 & 2 \\ 0 & -3 & 3 \\ 0 & 2 & -2\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$

$$
\begin{array}{r}
-4 x_{1}-x_{2}+2 x_{3}=0 \\
-3 x_{2}+3 x_{3}=0 \\
2 x_{2}-2 x_{3}=0
\end{array}
$$

Choose $x_{2}=d, \Rightarrow x_{3}=d, \Rightarrow 4 x_{1}=2 x_{3}-x_{2}=2 d-d=d, x_{1}=\frac{d}{4}$
Therefore the eigenvector is $\left(\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{c}\frac{d}{4} \\ d \\ d\end{array}\right)$, where $d$ is any constant.
$\lambda=2:$ Eigenvector satisfies $(A-2 I) \mathbf{x}=0$
$\left(\begin{array}{ccc}0 & -1 & 2 \\ 0 & 1 & 3 \\ 0 & 2 & 2\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$

$$
\begin{array}{r}
-x_{2}+2 x_{3}=0 \\
x_{2}+3 x_{3}=0 \\
2 x_{2}+2 x_{3}=0
\end{array}
$$

Hence $x_{3}=0, x_{2}=0$, choose $x_{1}=e$.
Therefore the eigenvector is $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}e \\ 0 \\ 0\end{array}\right)$ where $e$ is any constant.

