QUESTION

The point $A(2,3,1), B(0,1,2)$ and $C(2,-1,-1)$ lie on a plane.
(i) Write down the vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$.
(ii) Obtain a unit vector perpendicular to the plane.
(iii) Derive the vector equation of the plane.
(iv) Find the perpendicular distance from the point $D(5,2,2)$ to the plane.
(v) Obtain the coordinates of the point at which the perpendicular from D to the plane intersects the plane.

ANSWER
$A(2,3,1), \quad B(0,1,2), \quad C(2,-1,-1)$
(i) $\overrightarrow{A B}=(0-2,1-3,2-1)=(-2,-2,1)$
$\overrightarrow{A C}=(2-2,-1-3,-1-1)=(0,-4,-2)$
(ii) $\overrightarrow{A B} \times \overrightarrow{A C}=(-2,-2,1) \times(0,-4,-2)=(4-(-4), 0-4,8-0)=(8,-4,8)$.

To find the unit vector divide by the magnitude.
Now $|\overrightarrow{A B} \times \overrightarrow{A C}|=\left(8^{2}+(-4)^{2}+8^{2}\right)^{\frac{1}{2}}=(64+16+64)^{\frac{1}{2}}=12$,
therefore the unit vector is $\frac{1}{12}(8,-4,8)=\left(\frac{2}{3},-\frac{1}{3}, \frac{2}{3}\right)$
(iii) The vector equation of the plane is $\mathbf{r} . \mathbf{n}=c=\mathbf{a} . \boldsymbol{n}$

Therefore $\mathbf{r . n}=(2,3,1) .\left(\frac{2}{3},-\frac{1}{3}, \frac{2}{3}\right)=\frac{4}{3}-1+\frac{2}{3}=1$
i.e. \mathbf{r}. $\left(\frac{2}{3},-\frac{1}{3}, \frac{2}{3}\right)=1$ or $\mathbf{r} .(2,-1,2)=3$
(iv)

Distance from D to plane $=|\overrightarrow{D A} \cdot \hat{\mathbf{n}}|=\left|(-3,1,-1) \cdot\left(\frac{2}{3},-\frac{1}{3}, \frac{2}{3}\right)\right|=$ $\left|-2-\frac{1}{3}-\frac{2}{3}\right|=|-3|=3$
(v) Coordinates of N are

$$
(5,2,2)-3\left(\frac{2}{3},-\frac{1}{3}, \frac{2}{3}\right)=(5,2,2)-(2,-1,2)=(3,3,0)
$$

(Other methods could have been used).

