QUESTION

(a) Find the general solution of the differential equation

$$(2x + te^{x} + \cos t)\frac{dx}{dt} + e^{x} - x\sin t - 2t = 0.$$

(b) Find the general solution of the second order differential equation

$$\frac{d^2x}{dt^2} + 4x = \sin(2t).$$

ANSWER

(a) $(2x + te^x + \cos t)\frac{dx}{dt} + e^x - x\sin t - 2t = 0$ Is this exact? $\frac{\partial p}{\partial t} = \frac{\partial}{\partial t}(2x + te^x + \cos t) = e^x - \sin t$ equal therefore exact. $\frac{\partial q}{\partial x} = \frac{\partial}{\partial x}(e^x - x\sin t - 2t) = e^x - \sin t$ Find the function h to give the ODE in form $\frac{dh}{dt} = 0$;

 $\frac{\partial h}{\partial x} = 2x + te^x + \cos t, \qquad h = x^2 + te^x + x\cos t + f(t)$ $\frac{\partial h}{\partial t} = e^x - x\sin t - 2t, \qquad h = te^x + x\cos t - t^2 + g(x)$

Thus from inspection

$$h = x^2 + te^x + x\cos t - t^2 + \text{const.}$$

The solution is h = const, or $x^2 + te^x + x \cos t - t^2 = \text{const}$.

(b) $\frac{d^2x}{dt^2} + 4x = \sin(2t)$. The auxiliary equation is $m^2 + 4 - 0$, $m = \pm 2j$. Hence the complementary function is $x = A\cos(2t) + B\sin(2t)$. The natural form for a particular integral is not possible (because it appears in the complementary function), so try

$$x = t(C\cos(2t) + D\sin(2t)),$$

$$\frac{dx}{dt} = C\cos(2t) + D\sin(2t) + t\{-2C\sin(2t) + 2D\cos(2t)\}$$

$$= (D - 2Ct)\sin(2t) + (C + 2Dt)\cos(2t),$$

$$\frac{d^2x}{dt^2} = (D - 2Ct)2\cos(2t) - 2C\sin(2t)$$

$$+ (C + 2Dt)(-2\sin(2t)) + 2D\cos(2t)$$

$$= (4D - 4Ct)\cos(2t) + (-4C - 4Dt)\sin(2t)$$

Substituting this into the ODE gives

$$(4D - 4Ct)\cos(2t) - (4C + 4Dt)\sin(2t) + 4t(C\cos(2t) + D\sin(2t))$$

= \sin(2t)

i.e.
$$4D\cos(2t) - 4C\sin(2t) = \sin(2t)$$
.

Therefore
$$D = 0$$
, $C = -\frac{1}{4}$.

The general solution is $x = A\cos(2t) + B\sin(2t) - \frac{1}{4}t\cos(2t)$.