QUESTION

(a) Find the general solution of the differential equation

$$
\left(2 x+t e^{x}+\cos t\right) \frac{d x}{d t}+e^{x}-x \sin t-2 t=0
$$

(b) Find the general solution of the second order differential equation

$$
\frac{d^{2} x}{d t^{2}}+4 x=\sin (2 t) .
$$

ANSWER

(a) $\left(2 x+t e^{x}+\cos t\right) \frac{d x}{d t}+e^{x}-x \sin t-2 t=0$

Is this exact?

$$
\left.\begin{array}{l}
\frac{\partial p}{\partial t}=\frac{\partial}{\partial t}\left(2 x+t e^{x}+\cos t\right)=e^{x}-\sin t \\
\frac{\partial q}{\partial x}=\frac{\partial}{\partial x}\left(e^{x}-x \sin t-2 t\right)=e^{x}-\sin t
\end{array}\right\} \text { equal therefore exact. }
$$

Find the function h to give the ODE in form $\frac{d h}{d t}=0$;

$$
\begin{array}{ll}
\frac{\partial h}{\partial x}=2 x+t e^{x}+\cos t, & h=x^{2}+t e^{x}+x \cos t+f(t) \\
\frac{\partial h}{\partial t}=e^{x}-x \sin t-2 t, & h=t e^{x}+x \cos t-t^{2}+g(x)
\end{array}
$$

Thus from inspection

$$
h=x^{2}+t e^{x}+x \cos t-t^{2}+\text { const. }
$$

The solution is $h=$ const, or $x^{2}+t e^{x}+x \cos t-t^{2}=$ const.
(b) $\frac{d^{2} x}{d t^{2}}+4 x=\sin (2 t)$. The auxiliary equation is $m^{2}+4-0, m= \pm 2 j$.

Hence the complementary function is $x=A \cos (2 t)+B \sin (2 t)$.
The natural form for a particular integral is not possible (because it appears in the complementary function), so try

$$
\begin{aligned}
x & =t(C \cos (2 t)+D \sin (2 t)) \\
\frac{d x}{d t} & =C \cos (2 t)+D \sin (2 t)+t\{-2 C \sin (2 t)+2 D \cos (2 t)\}
\end{aligned}
$$

$$
\begin{aligned}
& =(D-2 C t) \sin (2 t)+(C+2 D t) \cos (2 t) \\
\frac{d^{2} x}{d t^{2}} & =(D-2 C t) 2 \cos (2 t)-2 C \sin (2 t) \\
& +(C+2 D t)(-2 \sin (2 t))+2 D \cos (2 t) \\
& =(4 D-4 C t) \cos (2 t)+(-4 C-4 D t) \sin (2 t)
\end{aligned}
$$

Substituting this into the ODE gives

$$
\begin{aligned}
& (4 D-4 C t) \cos (2 t)-(4 C+4 D t) \sin (2 t)+4 t(C \cos (2 t)+D \sin (2 t)) \\
& \quad=\sin (2 t)
\end{aligned}
$$

i.e. $4 D \cos (2 t)-4 C \sin (2 t)=\sin (2 t)$.

Therefore $D=0, C=-\frac{1}{4}$.
The general solution is $x=A \cos (2 t)+B \sin (2 t)-\frac{1}{4} t \cos (2 t)$.

