Question

Let ℓ_{1} and ℓ_{2} be parallel hyperbolic lines in \mathbf{H}, where ℓ_{1} is contained in a vertical Euclidean line. Prove that ℓ_{1} and ℓ_{2} are ultraparallel if and only if there is a hyperbolic line ℓ perpendicular to both ℓ_{1} and ℓ_{2}.

Answer

One way to proceed is by cases. Suppose that ℓ_{2} is ultraparallel to ℓ_{1} and has endpoints $a, b(a>0, b>a$ as drawn. The case that $b<a<0$ is similar).
Any line perpendicular to ℓ_{1} is contained in a euclidean circle centred at ξ (where ℓ_{1} 'intersects' \mathbf{R}).
Such a line is perpendicular to ℓ_{2} if and only if

$$
r^{2}+r_{2}^{2}=\left(\frac{1}{2}(b+a)-\xi\right)^{2}
$$

where r_{2} is the radius of the circle containing ℓ_{2} and r is the radius of the circle containing ℓ (and hence the only variable in the equation). That is

$$
r=\sqrt{\left(\frac{1}{2}(b+a)-\xi\right)^{2}-r_{2}^{2}}
$$

(and since $\ell_{1} \cap \ell_{2}=\emptyset\left(\ell_{1}, \ell_{2}\right.$ are disjoint) $\left.\frac{1}{2}(\mathrm{~b}+\mathrm{a})-\xi>\mathrm{r}_{2}\right)$
So, such a circle ℓ exists, center ξ, radius r as above.
If $\ell_{1} \ell_{2}$ are parallel but not ultraparallel, then either ℓ_{2} is a vertical euclidean line or is a euclidean circle passing through ξ.
In the former case, no circle perpendicular to ℓ_{1} can also be perpendicular to ℓ_{2}, since the angle between ℓ and ℓ_{2} is equal to the argument of the point of intersection of ℓ and ℓ_{2} (as shown in the picture).

We may in the latter case use the law of cosines to calculate the angle between ℓ (a circle perpendicular to ℓ_{1} with radius r) and ℓ_{2} (with fixed center c and fixed radius p to see that
$(c-\xi)^{2}=r^{2}+p^{2}-2 r p \cos \theta$
$(c-\xi)^{2}-p^{2}=r^{2}-2 p \cos \theta \cdot r$
The only way that $\theta=\frac{\pi}{2}$ is that

$$
(c-\xi)^{2}=r^{2}+p^{2}
$$

But note that $c-\xi=p$ (since $\ell_{1} \ell_{2}$ are parallel) and so $r=0$ which is not a circle. \otimes
So if $\ell_{1} \ell_{2}$ are ultraparallel there is a (unique) circle (containing a hyperbolic line) perpendicular to both. If $\ell_{1} \ell_{2}$ are parallel but not ultraparallel, no such circle exists and so we are done.

