Question

Given $a \in \mathbf{C}-\{0\}$, set $g(z)=a z$. Prove that g takes circles in $\overline{\mathbf{C}}$ to circles in $\overline{\mathbf{C}}$.

Answer
Let $\alpha z \bar{z}+\beta z+\bar{\beta} \bar{z}+\gamma=0$ be the equation of a circle in \mathbf{C}, call the circle A. $(\alpha, \gamma \in \mathbf{R}, \beta \in \mathbf{C})$.
$g(z)=a z=\omega$ so $z=\frac{1}{a} \omega$: plug into the equation for A :

$$
\alpha\left(\frac{1}{a} \omega\right)\left(\frac{1}{\bar{a}} \bar{\omega}\right)+\beta \frac{1}{a} \omega+\bar{\beta} \frac{1}{\bar{a}} \bar{\omega}+\gamma=0
$$

$\frac{\alpha}{|a|^{2}} \omega \bar{\omega}+\frac{\beta}{a} \omega+\left(\frac{\bar{\beta}}{a}\right) \bar{\omega}+\gamma=0$.
(note that since $\alpha=0$ if and only if $\frac{\alpha}{|a|^{2}}=0 g$ takes circles in \mathbf{C} to circles in \mathbf{C} and lines in \mathbf{C} to lines in \mathbf{C}).

