Question

Using the $\delta - \epsilon$ definition of limit, prove that for each $a \in \mathbf{C} - \{0\}$,

$$\lim_{z\to\infty}az=\infty.$$

Answer

$$\lim_{z \to a} az = \infty \ (a \neq 0)$$

 $\lim_{z\to\infty}az=\infty\ (a\neq0)$ given $\epsilon>0$, there is $\delta>0$ so that if $z\in\cup_{\delta}(\infty)-\{\infty\}$ then $az\in\cup_{\epsilon}(\infty)$.

$$az \in \cup_{\epsilon}(\infty): |az| > \epsilon |z| > \frac{\epsilon}{|a|}$$

Take $\delta = \frac{\epsilon}{|a|}$: then if $z \in \cup_{\delta}(\infty) - \{\infty\}$ then $|z| > \delta$ and so $|z| > \frac{\epsilon}{|a|}$ and so $|az| > \epsilon$ as desired.