QUESTION

You wish to leave a fund which pays out a fixed amount p each year in perpetuity. If the interest rate is assumed to be r from now until the end of time, how much should the initial fund be? If you wish to build up that fund by contributions over n years, how much should your annual payment be.
ANSWER
Want an amount P paid out after n years for all time. Interest rate $=r$, assume annual compounding. Consider 2 sides: payments in and payments out.
From mortgage calculation above over n years with an annual payment of d you save a total of $\frac{d\left[(1+r)^{n}-1\right]}{r}(\mathrm{C})$
If you want to pay out a sum P for ever you need the following amounts saved, assuming payment at the end of the year:

Year 1	Year 2	Year 3	\ldots	Year n
$\frac{P}{(1+r)}$	$\frac{P}{(1+r)^{2}}$	$\frac{P}{(1+r)^{3}}$		$\frac{P}{(1+r)^{n}}$

amount needed amount needed amount needed amount needed at start of at start of at start of at start of year to pay year to pay year to pay year to pay P in year 1 P in year $2 \quad P$ in year $3 \quad P$ in year n The total required to pay P at the end of each year in perpetuity is:

$$
\sum_{i=1}^{\infty} \frac{P}{(1+r)^{i}}=P\left[\frac{1}{1-\frac{1}{(1+r)}}\right]-P=\frac{P}{r}(D)
$$

Thus (C) must equal (D). Hence

$$
\frac{P}{r}=\frac{d\left[(1+r)^{n}-1\right]}{r} \Rightarrow P=d\left[(1+r)^{n}-1\right] \Rightarrow d=\frac{P}{\left[(1+r)^{n}-1\right]}
$$

Hence if you want to bequeath a prize of $£ 1000$ per year in 35 years time and expect to get 5% p.a. interest,

$$
d=\frac{1000}{\left((1.05)^{35}-1\right)}=221.43 \text { per year. }
$$

(Note that with inflation the 1000 would be worth increasingly less!)

