QUESTION

Using the results of question 4, suppose you want to retire in 35 years time with a total pension fund of $£ 250,000$ (or equivalent Euros/Dollars...).
Calculate your pension payments assuming annual compounding, assuming annual growths of
(a) 5%
(b) 15%

This question should teach you never to be an academic.
ANSWER
(a) $T=35, F_{T}=250,000, r=5 \%$

Annual compounding: $d=\frac{250,000 \times 0.05}{(1.05)^{35}-1}=2767.93$
m-compounding, say $m=2: d=250,000\left\{\frac{\left(1+\frac{0.05}{2}\right)^{2}-1}{\left(1+\frac{0.05}{2}\right)^{70}-1}\right\}=2732.29$
continuous compounding: $d=\frac{250,000\left(e^{0.05}-1\right)}{\left(e^{0.05435}-1\right)}=2695.87$
(b) $T=35, F_{T}=250,000, r=15 \%$

Annual compounding: $d=\frac{250,000 \times 0.15}{(1.15)^{35}-1}=283.71$
m-compounding, say $m=2: d=250,000\left\{\frac{\left(1+\frac{0.15}{2}\right)^{2}-1}{\left(1+\frac{0.15}{2}\right)^{70}-1}\right\}=247.85$
continuous compounding: $d=\frac{250,000\left(e^{0.15}-1\right)}{\left(e^{0.15 \times 35}-1\right)}=213.43$
Note that there is a factor of 10 difference in payments if return con be increased from 5% to 15%. 5% is probably more likely over 35 years!

