QUESTION

Assuming an interest rate of r and discrete annual payments, what is the present value of a sum of money to be recieved in T years' time, i.e., how much would you invest now to obtain the desired sum in T years? Hence what is the present value of $£ 100$ to be recieved in 10 years time when the interest rate is 5% and
(a) annual discounting is used;
(b) semi-annual discounting is used;
(c) continuous discounting.

ANSWER
Rate $=r, t$ years, $F=$ amount to be received in future, $P=$ value of that money now.
It always helps to turn the question around: How much would I have to invest now to receive F in T years.
(a) Annual compounding: If I invest P now, in T years I have

$$
P(1+r)^{T}
$$

Thus if this has to be F we have

$$
F+P(1+r)^{T}
$$

or

$$
P=\frac{F}{(1+r)^{T}}
$$

the present value of F.
(b) Semiannual compounding. Follows the same argument as (a), although the interest factor is now $\left(1+\frac{r}{2}\right)^{2 T} \quad(m=2)$. Thus

$$
P=\frac{F}{\left(1+\frac{r}{2}\right)^{2 t}}
$$

(c) Continuous discounting: use $P e^{r T}=F$

$$
\Rightarrow P=F e^{-r T}
$$

Thus if $F=100, r=0.05, T=10$

$$
P=\left\{\begin{array}{ll}
(a) \frac{100}{(1.05)^{1} 0} & =61.39 \\
(b) & \frac{100}{(1.025)^{20}}
\end{array}=61.03, ~=60.65 ~ \$ ~(c) \frac{100}{e^{-0.5}}=1\right.
$$

