## Question

What can be said about a sequence $\left\{a_{n}\right\}$ if it converges and if every $a_{n}$ is an integer? Also, give a qualitative description of all of the convergent subsequences of the sequence

$$
1,1,2,1,2,3,1,2,3,4,1,2,3,4,5, \ldots
$$


#### Abstract

Answer A convergent sequence of integers must be eventually constant; that is, there exists $M$ so that $a_{n}=a_{p}$ for all $n, p>M$. This follows from the Cauchy criterion with $\varepsilon=\frac{1}{2}$ and the fact that the difference of two non-equal integers is at least 1 .

For this given sequence, the convergent subsequences are all of the following form: pick a positive integer $p$, and note that $p$ appears infinitely many times in the given sequence. Then, a convergent subsequence is of the form $a_{0}, a_{1}, \ldots, a_{M}, a_{M+1}=p, a_{M+2}=p, \ldots$ for some $M$, where $a_{0}, \ldots, a_{M}$ are arbitrary positive integers.


