
Question

Determine the radius of convergence and the interval of convergence of the
power series
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Answer

Apply the ratio test:
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So, the radius of convergence is 1, and this series converges absolutely for
|x− 1| < 1. We need to check the endpoints of this interval.

At x = 0, the series becomes
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At x = 2, the series becomes
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So, the interval of convergence is (0, 2).
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