Question

Determine the radius of convergence and the interval of convergence of the power series

$$
\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n}(x-1)^{n}
$$

Answer

Apply the ratio test:
$\lim _{n \rightarrow \infty}\left|\frac{\left(1+\frac{1}{n+1}\right)^{n+1}(x-1)^{n+1}}{\left(1+\frac{1}{n}\right)^{n}(x-1)^{n}}\right|=|x-1| \lim _{n \rightarrow \infty} \frac{\left(1+\frac{1}{n+1}\right)^{n+1}}{\left(1+\frac{1}{n}\right)^{n}}=|x-1| \frac{e}{e}=|x-1|$.
So, the radius of convergence is 1 , and this series converges absolutely for $|x-1|<1$. We need to check the endpoints of this interval.
At $x=0$, the series becomes $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n}(-1)^{n}$, which diverges by the $n^{\text {th }}$ term test for divergence, since $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}(1)^{n}$ does not exist, since $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$.
At $x=2$, the series becomes $\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{n}$, which diverges since $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=$ e.

So, the interval of convergence is $(0,2)$.

