Question

By explicitly calculating its partial sums, show that the infinite series

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)
$$

is convergent.

Answer

Calculating, we see that the $k^{t h}$ partial sum is a telescoping sum, namely
$S_{k}=\sum_{n=1}^{k}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(\frac{1}{1}-\frac{1}{1+1}\right)+\left(\frac{1}{2}-\frac{1}{2+1}\right)+\cdots+\left(\frac{1}{k}-\frac{1}{k+1}\right)=1-\frac{1}{k+1}$.
Therefore, $\lim _{k \rightarrow \infty} S_{k}=1-\lim _{k \rightarrow \infty} \frac{1}{k+1}=1$, and so this series converges.

