Question

Prove that if a sequence $\left\{a_{n}\right\}$ is increasing and bounded above, then it is convergent.

Answer

Since $\left\{a_{n}\right\}$ is bounded above, it has a supremum a. By the definition of supremum, for every $\varepsilon>0$, there exists M so that $\left|a_{M}-a\right|<\varepsilon$. Since $\left\{a_{n}\right\}$ is increasing and since a is an upper bound for $\left\{a_{n}\right\}$, we have that $a_{M}<a_{n} \leq a$ for every $n>M$. In particular, we have that $\left|a_{n}-a\right|<\left|a_{M}-a\right|<\varepsilon$ for every $n>M$, and this is just the definition that $\left\{a_{n}\right\}$ converges to a.

