Question

State both parts of the Fundamental Theorem of Calculus. Also, determine whether the following argument is correct: By the Fundamental Theorem of Calculus,

$$
\int_{-1}^{1} \frac{1}{x^{2}} \mathrm{~d} x=\left[-\frac{1}{x}\right]_{-1}^{1}=-2
$$

and so the integral of a positive function can be negative.
Answer
Fundamental theorem of calculus: Let f be a continuous function on the closed interval $[a, b]$.

- Consider the function on $[a, b]$ defined by

$$
F(x)=\int_{a}^{x} f(t) \mathrm{d} t
$$

Then, $F^{\prime}(x)=f(x)$ for every x in (a, b). In shorthand,

$$
f(x)=\frac{\mathrm{d}}{\mathrm{~d} x} \int_{a}^{x} f(t) \mathrm{d} t
$$

- If G is any function on $[a, b]$ satisfying $G^{\prime}(x)=f(x)$, then

$$
\int_{a}^{b} f(x) \mathrm{d} x=G(b)-G(a)
$$

In shorthand,

$$
\int_{a}^{b} G^{\prime}(x) \mathrm{d} x=G(b)-G(a) .
$$

The proof is false: the integrad is not continuous on $[-1,1]$, and so the fundamental theorem of calculus does not apply.

