Question

Determine whether the sequence

$$
\left\{a_{n}=\frac{\left(\frac{2}{3}\right)^{n}}{2-n^{1 / n}}\right\}
$$

converges or diverges. If the sequence converges, determine its limit.

Answer

We know that $\lim _{n \rightarrow \infty}\left(\frac{2}{3}\right)^{n}=0$, since $\frac{2}{3}<1$. Hence, we need to evaluate $\lim _{n \rightarrow \infty} n^{1 / n}$: start by writing

$$
n^{1 / n}=\exp (\ln (n))^{1 / n}=\exp \left(\frac{\ln (n)}{n}\right)
$$

Since $\lim _{n \rightarrow \infty} n^{1 / n}=\exp \left(\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}\right)$, and since $\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}$ has the indeterminate form $\frac{\infty}{\infty}$, we may use l'Hopital's rule to evaluate:

$$
\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{1}=0
$$

and so

$$
\lim _{n \rightarrow \infty} n^{1 / n}=\exp \left(\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}\right)=e^{0}=1
$$

Hence, the original limit can be evaluated using the arithmetic of limits:

$$
\lim _{n \rightarrow \infty} \frac{\left(\frac{2}{3}\right)^{n}}{2-n^{1 / n}}=\frac{0}{2-1}=0
$$

and so the sequence converges to 0 .

