Question

Calculate the Taylor series of the function

$$
f(x)=\cos (2 x)
$$

about $x_{0}=\pi$.
Answer
The Taylor series centered at $x_{0}=\pi$ is the series

$$
\sum_{n=0}^{\infty} \frac{1}{n!} f^{(n)}(\pi)(x-\pi)^{n}
$$

Note that $f^{(n)}(\pi)= \pm \sin (\pi)=0$ for n odd, that $f^{(4 k)}(\pi)=\cos (\pi)=1$, and that $f^{(4 k+2)}(\pi)=-\cos (\pi)=-1$ for $k \geq 0$. Hence, the Taylor series becomes

$$
\begin{aligned}
& \sum_{k=0}^{\infty} \frac{1}{(4 k)!} f^{(4 k)}(\pi)(x-\pi)^{4 k}+\sum_{k=0}^{\infty} \frac{1}{(4 k+2)!} f^{(4 k+2)}(\pi)(x-\pi)^{4 k+2} \\
& \quad=\sum_{k=0}^{\infty} \frac{1}{(4 k)!}(x-\pi)^{4 k}-\sum_{k=0}^{\infty} \frac{1}{(4 k+2)!}(x-\pi)^{4 k+2} \\
& \quad=\sum_{p=0}^{\infty} \frac{1}{(2 p)!}(-1)^{p}(x-\pi)^{2 p}
\end{aligned}
$$

