Question

Use the Mean Value theorem to prove that if f and g are two differentiable functions on the closed interval $[a, b]$, where $a<b$, and if $f^{\prime}(x)=g^{\prime}(x)$ for all x in $[a, b]$, then there is a constant K so that $f(x)=g(x)+K$ for all x in $[a, b]$.

Answer

Set $h(x)=f(x)-g(x)$, so that $h^{\prime}(x)=f^{\prime}(x)-g^{\prime}(x)=0$ for all x. Take x in (a, b], and apply the mean value theorem to $h(x)$ (which is continuous on a, b and differentiable on (a, b) since both $f(x)$ and $g(x)$ are) on $[a, x]$, to see that there exists c in (a, x) so that $h^{\prime}(c)=\frac{h(x)-h(a)}{x-a}$. But since $h^{\prime}(c)=0$, we have that $h(x)-h(a)=0$, or that $h(x)=h(a)$. That is, $f(x)=g(x)+h(a)$, as desired, where $K=h(a)$.

