Question

Consider the function $g: \mathbf{R} \rightarrow \mathbf{R}$ given by setting $g(x)=1$ if x is a rational number and $g(x)=0$ if x is an irrational number. Determine whether g is or is not continuous.

Answer

This function is not continuous at 0 , since there are numbers arbitrarily close to 0 , namely all the irrational numbers of the form $\frac{\pi}{n}$ for $n \in \mathbf{N}$, and we have that $\left|g(0)-g\left(\frac{\pi}{n}\right)\right|=|1-0|=1$. Hence, for $\varepsilon=\frac{1}{2}$, there does not exist $\delta>0$ so that if $|0-a|<\delta$, then $|g(0)-g(a)|<\varepsilon=\frac{1}{2}$. So, $\lim _{x \rightarrow 0} g(x) \neq g(0)$. (In fact, $\lim _{x \rightarrow 0} g(x)$ does not exist.)

