Question

In analysing the linear-free vibrations of a uniform clamped-beam, one encounters the eigenvalue problem

$$\cos \lambda \cosh \lambda = -1$$

Show that for n integer,

$$\lambda \sin\left(n - \frac{1}{2}\right)\pi + 2e^{-(n - \frac{1}{2})\pi}\sin\left(n - \frac{1}{2}\right)\pi, \ n \to +\infty$$

Answer

 $\cosh \lambda \to \infty \text{ as } \lambda \to \infty \text{ so}$

$$\cos \lambda = -\frac{1}{\cosh \lambda} \to 0 \text{ as } \lambda \to \infty$$

Therefore we look for large λ solutions $\lambda \approx \left(n - \frac{1}{2}\right)\pi$ n integer, being the

zeros of
$$\cos \lambda$$
.
So try $\lambda = \left(n - \frac{1}{2}\right)\pi + \delta$, $\delta = o(1)$.
Substitute back into full equation.

$$\cos\left(\left(n - \frac{1}{2}\right)\pi + \delta\right) = -\frac{1}{\cosh((n - \frac{1}{2})\pi + \delta)}$$