Question

Suppose that a r.v. X, either discrete or continuous, has mean μ and variance σ^{2}. Define a function $h(c)$ by

$$
h(c)=E\left[(X-c)^{2}\right], \quad c \in R^{1} .
$$

By noting that $h(c)$ is a quadratic function is c, show that $h(c)$ attains its minimum value, σ^{2}, at $c=\mu$. By noting $E\left[(X-\mu)^{2}\right] \geq 0$, show that $E(X)^{2} \leq E\left(X^{2}\right)$. If $E(X)^{2}=E\left(X^{2}\right)$ what can be said about X ?
Answer
Note that

$$
\begin{aligned}
h(c) & =E\left[(X-\mu+\mu-c)^{2}\right] \\
& =E\left[(X-\mu)^{2}+2(X-\mu)(\mu-c)+(\mu-c)^{2}\right] \\
& =\sigma^{2}+(\mu-c)^{2}
\end{aligned}
$$

from which it is clear that $h(c)$ attains its minimum σ^{2} at $c=\mu . E\left(X^{2}\right) \geq$ $\{E(X)\}^{2}$ follows obviously from
$\operatorname{var}(X)=E\left(X^{2}\right)-\{E(X)\}^{2} \geq 0$. If the quantity $\operatorname{var}(X)=0$ then X is constant and so X is non-random.

