Question

If f and g are measurable functions such that $\int_E f = \int_E g$ for all measurable sets E then show that f = g a.e.

(Hint. Suppose f = g a.e. is false and consider the sequence of sets $E_n = \{x | f(x) \ge g(x) + \frac{1}{n}\} \text{ or } F_n = \{x | g(x) \ge f(x) + \frac{1}{n}\}\}$

Answer

Let
$$A_1 = \{x | f(x) > g(x)\}$$
 and $A_2 = \{x | f(x) < g(x)\}$
 $A - 1 \cup A_2 = \{x | f(x) \neq g(x)\}$
Suppose $m(A_1) > 0$, $A_1 = \bigcup_{n=1}^{\infty} E_n$

Suppose
$$m(A_1) > 0$$
, $A_1 = \bigcup_{n=0}^{\infty} E_n$

Therefore there exists
$$n$$
, $mE_n > 0$

Therefore there exists
$$n$$
, $mE_n > 0$
 $E_n = \{x | f(x) - g(x) \ge \frac{1}{n}\}$ $f - g$ is measurable therefore E_n is measurable.

$$\int_{E_n} f - \int_{E_n} g = \int_{E_n} f - g \ge \frac{1}{n} m E_n > 0 \quad \text{contradiction.}$$

Similarly if $m(A_2) > 0$ we get a contradiction.