QUESTION

(a) Consider the exponential distribution

$$
f(x)=\lambda e^{-\lambda x}, \quad x \geq 0
$$

(i) Prove that the mean of the exponential distribution is λ^{-1}.
(ii) Write down an expression which demonstrates that a probability density function has the no-memory property.
(iii) Prove that the exponential distribution has the no-memory property.
(iv) The inter-arrival time of the school buses is believed to be exponentially distributed with a mean of 20 minutes. You have been waiting for the bus for 30 minutes; what is the probability that you have to wait for more than one hour at the end?
(b) Using the mixed congruential generator

$$
x_{n+1}=\left(7 x_{n}+11\right) \bmod 31
$$

and seed $x_{0}=9$, generate a stream of five random numbers in the interval $[0,30]$. Use these to generate five random numbers in the interval $[0,1)$, to three decimal place accuracy.
(c) By using the inverse transformation method, show that $-\frac{1}{\lambda} \ln (U)$ is exponentially distributed with mean λ^{-1}. Here, U is a continuous random variable uniformly distributed over $(0,1)$.

ANSWER
(a) (i)

$$
\begin{aligned}
E(x) & =\int_{0}^{\infty} t \lambda e^{-\lambda t} d t \\
& =\int_{0}^{\infty} t e^{-\lambda t} d(\lambda t) \\
& =\int_{0}^{\infty}-t d\left(e^{-\lambda t}\right) \\
& =\int_{0}^{\infty} e^{-\lambda t} d t-\left.t e^{-\lambda t}\right|_{0} ^{\infty} \\
& =\int_{0}^{\infty} e^{-\lambda t} d t-0 \\
& =\frac{1}{\lambda}
\end{aligned}
$$

(ii) A probability distribution $f(x)$ is said to have the no-memory property if

$$
\operatorname{Prob}(x>t+h \mid x \geq t)=\operatorname{Prob}(x>h)
$$

(iii) For the exponential distribution function, it is clear that

$$
\operatorname{Prob}(x>h)=\int_{h}^{\infty} \lambda e^{-\lambda t} d t=e^{-\lambda h}
$$

We note that

$$
\operatorname{Prob}(x>h+t \mid x \geq t)=\frac{\operatorname{Prob}(x>h+t \text { and } x \geq t)}{\operatorname{Prob}(x \geq t)}
$$

Therefore we have

$$
\operatorname{Prob}(x>h+t \text { and } x \geq t)=e^{-\lambda(t+h)} \text { and } \operatorname{Prob}(x \geq t)=e^{-\lambda t}
$$

Hence

$$
\operatorname{Prob}(x>t+h \mid x \geq t)=\frac{e^{-\lambda(t+h)}}{e^{-\lambda t}}=\operatorname{Prob}(x>h)
$$

(iv) By the no memory property, the probability is given by

$$
\int_{3} 0^{\infty} \frac{1}{20} e^{-\frac{t}{20}} d t=e^{-\frac{3}{2}}
$$

(b) $x_{0}=9, x_{1}=12, x_{2}=2, x_{3}=25, x_{4}=0, x_{5}=11$ therefore $U_{1}=$ 0.387, $U_{2}=0.065, U_{3}=0.806, U_{4}=0, U_{5}=0.355$.
(c) We note that cumulative probability distribution of the Exponential distribution is

$$
F(x)=\int_{0}^{x} \lambda e^{-\lambda t} d t=10 e^{-\lambda x}
$$

By using the inverse transform method we have

$$
x=F^{-1}(U)=-\frac{1}{\lambda} \log (1-U)
$$

Here U is the continuous random variable uniformly distributed over $(0,1)$. Since U and $1-U$ have the same probability distribution,

$$
-\frac{1}{\lambda} \log U
$$

is also exponentially distributed with mean λ^{-1}.

