Question

Consider the stereographic projection map ξ from \mathbf{S}^{1} to $\mathbf{R} \cup\{\infty\}$, as defined in class. Determine the images of the vertices of the regular pentagon with vertices $\exp \left(\frac{2 \pi i k}{n}\right)$ for $0 \leq k \leq 4$.
More generally, for each $n \geq 5$, determine the images under ξ of the vertices of a regular n-gon whose vertices lie on \mathbf{S}^{1} (and where one of the vertices is at 1).

Answer

$\xi(z)$: intersection of line through $i=N$ and z with \mathbf{R}.
$\underline{\text { line through } i \text { and } z}$: slope $m=\frac{\operatorname{Im}(z)-1}{\operatorname{Re}(z)}$
equation:

$$
\begin{aligned}
y-1 & =m(x-0) \\
y-1 & =\frac{\operatorname{Im}(\mathrm{z})-1}{\operatorname{Re}(z)} x
\end{aligned}
$$

Set $y=p$, to get $x=\frac{\operatorname{Re}(z)}{1-\operatorname{Im}(z)}$.
So, $\xi(z)=\frac{\operatorname{Re}(z)}{1-\operatorname{Im}(z)}(\xi(n)=\infty)$.
The vertices of the regular n-gon are

$$
\begin{array}{r}
\exp \left(\frac{2 \pi \mathrm{i}}{\mathrm{n}} \mathrm{k}\right) \quad 0 \leq \mathrm{k}<\mathrm{n} \\
\text { So, } \xi\left(\exp \left(\frac{2 \pi \mathrm{i}}{\mathrm{n}} \mathrm{k}\right)\right)=\frac{\operatorname{Re}\left(\frac{2 \pi \mathrm{i}}{\mathrm{n}} \mathrm{k}\right)}{1-\operatorname{Im}\left(\frac{2 \pi \mathrm{i}}{\mathrm{n}} \mathrm{k}\right)}=\frac{\cos \left(\frac{2 \pi i}{n} k\right)}{1-\sin \left(\frac{2 \pi i}{n} k\right)}
\end{array}
$$

(Note that N is a vertex for the regular n-gon for all $n \equiv 0(\bmod 4)$)

