QUESTION Let $\mathbf{u} \neq \mathbf{0}$ and $\mathbf{v} \in \mathbf{R}^{n}$. Consider the vector $\lambda \mathbf{u}+\mathbf{v}$ where $\lambda \in \mathbf{R}$, then by positivity
$0 \leq(\lambda \mathbf{u}+\mathbf{v}) \cdot(\lambda \mathbf{u}+\mathbf{v})=(\mathbf{u} \cdot \mathbf{u}) \lambda^{2}+2(\mathbf{u} \cdot \mathbf{v}) \lambda+(\mathbf{v} \cdot \mathbf{v})$.
(a) Considered as a polynomial in λ, how many real roots does

$$
p(\lambda)=\left(\mathbf{u} \cdot \mathbf{u} \lambda^{2}+2(\mathbf{u} . \mathbf{v}) \lambda+(\mathbf{v . v})\right.
$$

have?
(b) Write down the discriminant of the polynomial $p(\lambda)$.
(c) What does the result in part (a) tell you about the discriminant?
(d) Deduce the Cauchy-Schwarz inequality: (u.v) ${ }^{2} \leq(\mathbf{u} . \mathbf{u})(\mathbf{v} . \mathbf{v})$.
(e) Prove the triangle inequality in $\mathbf{R}^{n}:|\mathbf{u}+\mathbf{v}| \leq|\mathbf{u}|+|\mathbf{v}|$
[Hint: Rewrite in terms of the inner product: $|u|=\sqrt{(\mathbf{u} \cdot \mathbf{u})}$, etc.]
(f) Prove that in $\mathbf{R}^{n}: \quad|\mathbf{u}+\mathbf{v}|^{2}+|\mathbf{u}-\mathbf{v}|^{2}=2\left(|\mathbf{u}|^{2}+|\mathbf{v}|^{2}\right)$.

ANSWER
(a) Since $p(\lambda) \geq 0$ for all λ, there is at most one real root.
(b) $\Delta=4(\mathbf{u} . \mathbf{v})^{2}-4(\mathbf{u} . \mathbf{u})(\mathbf{v . v})$.
(c) Since $p(\lambda)$ has at most one real root, $\Delta \leq 0$.
(d) Divide $\Delta \leq 0$ by 4 .
(e) In terms of inner products the desired result can be written

$$
\begin{aligned}
& \sqrt{\{(\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v})\}} \leq \sqrt{(\mathbf{u} \cdot \mathbf{u})}+\sqrt{(\mathbf{v . v})} \\
\Leftrightarrow & (\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v}) \leq \mathbf{u} \cdot \mathbf{u}+2 \sqrt{\{(\mathbf{u} \cdot \mathbf{u})(\mathbf{v} \cdot \mathbf{v})\}}+(\mathbf{v} \cdot \mathbf{v}) \\
\Leftrightarrow & \mathbf{u} \cdot \mathbf{u}+2 \mathbf{u} \cdot \mathbf{v}+\mathbf{v . v} \leq \mathbf{u} \cdot \mathbf{u}+2 \sqrt{\{(\mathbf{u} \cdot \mathbf{u})(\mathbf{v} \cdot \mathbf{v})\}}+(\mathbf{v . v}) \\
\Leftrightarrow & \mathbf{u . v} \leq \sqrt{\{(\mathbf{u} \cdot \mathbf{u})(\mathbf{v} \cdot \mathbf{v})\}} \\
\Leftrightarrow & (\mathbf{u} \cdot \mathbf{v})^{2} \leq(\mathbf{u} \cdot \mathbf{u})(\mathbf{v} \cdot \mathbf{v})
\end{aligned}
$$

but this is just the Cauchy-Schwarz inequality.
(f)

$$
\begin{aligned}
|\mathbf{u}+\mathbf{v}|^{2}+|\mathbf{u}-\mathbf{v}|^{2} & =(\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v})+(\mathbf{u}-\mathbf{v}) \cdot(\mathbf{u}-\mathbf{v}) \\
& =\mathbf{u} \cdot \mathbf{u}+2 \mathbf{u} \cdot \mathbf{v}+\mathbf{v} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{u}-2 \mathbf{u} \cdot \mathbf{v}+\mathbf{v} \cdot \mathbf{v} \\
& =2(\mathbf{u} \cdot \mathbf{u}+\mathbf{v} \cdot \mathbf{v}) \\
& =2\left(|\mathbf{u}|^{2}+|\mathbf{v}|^{2}\right) .
\end{aligned}
$$

