QUESTION The inner product is sometimes written < u,v > rather than
u.v. In this notation the basic properties become

(a) <u,v>=<vyu> symmetry,
(b) <utv,w>=<u,w >+ <v,w > additivity,
() <Auv>=A<uv> homogeneity,

(d) <wv,v>>0with <v,v >=0<v=0 positivity.
More generally if V' is a vector space then a function <>: V x V' — R which
associates a real number with each pair of ordered vectors is called an inner
product if the above four properties hold; V' itself is called an inner product
space.
The concepts of length of a vector, distance between vectors, angle between
vectors, orthogonal bases etc. can be defined for such spaces and the Gram-
Schmidt process still works.
Example The vector space P, of polynomials of degree less than or equal to
two can be turned into an inner product space by defining

<p.q>= /_llp(ﬁf)Q(ﬁ) dz.

One basis for P, is the set {1, z,2?} and since
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the length of the “vector” 1 is
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and the length of the “vector” x is

Furthermore since
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the functions 1 and x are orthogonal with respect to the inner product and
the functions % and \/ga: are orthonormal. Since x? is not orthogonal to 1,
however, the basis {1, z,2?} is not an orthogonal basis.



Exercise Apply the Gram-Schmid
it into an orthogonal basis and the

t process to the basis {1,z,z%} to turn
normalise the new basis. (The resulting

polynomials are the first three normalised Legendre polynomials.)

ANSWER Since 1 and x are orthogonal one can take
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The orthonormal basis giving the first few normalised Legendre polynomials
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