Question

Consider the system of equations

$$
\begin{aligned}
& 2 x+3 y+6 z=1 \\
& 6 x+2 y-3 z=1 \\
& 3 x-6 y+2 z=2
\end{aligned}
$$

Show by matrix inversion that the solution set is $x=\frac{2}{7}, y=-\frac{1}{7}, z=\frac{1}{7}$
What is the geometrical significance of this?
Note: No marks will be given unless a full working of the calculation of the inverse matrix is shown.

Answer

$$
\begin{aligned}
& 2 x+3 y+6 z=1 \\
& 6 x+2 y-3 z=1 \\
& 3 x-6 y+2 z=2
\end{aligned}
$$

$\Rightarrow\left(\begin{array}{ccc}2 & 3 & 6 \\ 6 & 2 & -3 \\ 3 & -6 & 2\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$
$\mathbf{A} \cdot \mathbf{X}=\mathbf{K}$
Require \mathbf{A}^{-1}, since $\mathbf{X}=\mathbf{A}^{-1} \mathbf{K}$
Step (iii)

$$
\begin{aligned}
\triangle & =\operatorname{det} A \\
& =\left|\begin{array}{ccc}
2 & 3 & 6 \\
6 & 2 & -3 \\
3 & -6 & 2
\end{array}\right| \\
& =2\left|\begin{array}{cc}
2 & -3 \\
-6 & 2
\end{array}\right|-3\left|\begin{array}{cc}
6 & -3 \\
3 & 2
\end{array}\right|+6\left|\begin{array}{cc}
6 & 2 \\
3 & -6
\end{array}\right| \\
& =2 \times(4-18)-3 \times(12+9) \\
& =-3 \times 42 \\
& =-28-63-252 \\
& =-343 \\
& \neq \underline{0}
\end{aligned}
$$

so there exists an inverse

Step (i) Cofactors of matrix are given by
$\left(\begin{array}{lll}A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33}\end{array}\right)=\left(\begin{array}{ccc}2 & 3 & 6 \\ 6 & 2 & -3 \\ 3 & -6 & 2\end{array}\right)$
cofactor of $A_{11}=+\left|\begin{array}{cc}2 & -3 \\ -6 & 2\end{array}\right|=-14$ Following +- sign pattern
cofactor of $A_{12}=-\left|\begin{array}{cc}6 & -3 \\ 3 & 2\end{array}\right|=-21$
cofactor of $A_{13}=+\left|\begin{array}{cc}6 & 2 \\ 3 & -6\end{array}\right|=-42$
cofactor of $A_{21}=-\left|\begin{array}{cc}3 & 6 \\ -6 & 2\end{array}\right|=-42$
cofactor of $A_{22}=+\left|\begin{array}{ll}2 & 6 \\ 3 & 2\end{array}\right|=-14$
cofactor of $A_{23}=-\left|\begin{array}{cc}2 & 3 \\ 3 & -6\end{array}\right|=+21$
cofactor of $A_{31}=+\left|\begin{array}{cc}3 & 6 \\ 2 & -3\end{array}\right|=-21$
cofactor of $A_{32}=-\left|\begin{array}{cc}2 & 6 \\ 6 & -3\end{array}\right|=+42$
cofactor of $A_{33}=+\left|\begin{array}{ll}2 & 3 \\ 6 & 2\end{array}\right|=-14$
Matrix of cofactors is thus:

$$
\left(\begin{array}{lll}
-14 & -21 & -42 \\
-42 & -14 & +21 \\
-21 & +42 & -14
\end{array}\right)
$$

Step (ii)
Transpose this to get $\operatorname{adj} A$

$$
\operatorname{adj} A=\left(\begin{array}{ccc}
-14 & -42 & -21 \\
-21 & -14 & 42 \\
-42 & 21 & -14
\end{array}\right)
$$

Step(iii)
$\operatorname{det} A=-343$
Step (iv)

$$
\begin{aligned}
A^{-1} & =\frac{\operatorname{adj} A}{\operatorname{det} A}=\frac{1}{-343}\left(\begin{array}{ccc}
-14 & -42 & -21 \\
-21 & -14 & 42 \\
-42 & 21 & -14
\end{array}\right) \\
& =\frac{1}{49}\left(\begin{array}{ccc}
2 & 6 & 3 \\
3 & 2 & -6 \\
6 & -3 & 2
\end{array}\right)
\end{aligned}
$$

Hence

$$
\begin{aligned}
\mathbf{X} & =-\frac{1}{49}\left(\begin{array}{ccc}
2 & 6 & 3 \\
3 & 2 & -6 \\
6 & -3 & 2
\end{array}\right) \times\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right) \\
& =\frac{1}{49} \times\left(\begin{array}{c}
2+6+6 \\
3+2-12 \\
6-3+4
\end{array}\right) \\
& =\frac{1}{49} \times\left(\begin{array}{c}
14 \\
-7 \\
7
\end{array}\right) \\
\mathbf{X} & =\left(\begin{array}{c}
\frac{2}{7} \\
-\frac{1}{7} \\
\frac{1}{7}
\end{array}\right)
\end{aligned}
$$

This the point of intersection of three planes in 3-D.

