Question

Two geometrical objects are defined by the cartesian equations

$$
\begin{gathered}
2 x+7 y+5 z=3 \\
\frac{x+3}{2}=\frac{y-5}{-1}=\frac{z-2}{-3}
\end{gathered}
$$

One is a line, and the other is a plane. State which is which.
Convert the cartesian equations to vector equations and hence find the intersection between the objects.
Find the angle between the line and a normal to the plane.

Answer

$2 x+7 y+5 z=3$ is a plane
$\frac{x+3}{2}=\frac{y-5}{-1}=\frac{z-2}{-3}$ is a line
Plane can be rewritten as

$$
(2,7,6) \cdot(x, y, z)=3
$$

for general $\mathbf{r}=(x, y, z)$
i.e.,

$$
\mathbf{r} \cdot(2 \mathbf{i}+7 \mathbf{j}+5 \mathbf{k})=3
$$

For the line:
If, $\frac{x+3}{2}=\lambda, \frac{y-5}{-1}=\lambda$ and $\frac{z-2}{-3}=\lambda$ simultaneously
Therefore $\left\{\begin{array}{l}x=2 \lambda-3 \\ y=-\lambda+5 \\ z=-3 \lambda+2\end{array}\right.$
Therefore if $\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$,
$\mathbf{r}=(2 \lambda-3) \mathbf{i}+(5-\lambda) \mathbf{j}+(2-3 \lambda) \mathbf{k}$
Therefore $\underline{\mathbf{r}=-3 \mathbf{i}+5 \mathbf{j}+2 \mathbf{k}+\lambda(2 \mathbf{i}-\mathbf{j}-3 \mathbf{k})}$

Intersection is when
$[(-3 \mathbf{i}+5 \mathbf{j}+2 \mathbf{k})+\lambda(2 \mathbf{i}-\mathbf{j}-3 \mathbf{k})] \cdot(2 \mathbf{B A}+7 \mathbf{B A}+5 \mathbf{B A})=3$
$\Rightarrow(2 \lambda-3) \times 2+(5-\lambda) \times 7+(2-3 \lambda) \times 5=3$
$\Rightarrow 4 \lambda-6+35-7 \lambda+10-15 \lambda=3$
$\Rightarrow-18 \lambda+39=3$
$\Rightarrow-18 \lambda=-36$
$\Rightarrow \underline{\lambda=2}$
Therefore intersection at
$\mathbf{r}=(2 \times 2-3) \mathbf{i}+(5-2) \mathbf{j}+(2-3 \times 2) \mathbf{k}$

$$
\underline{\mathbf{r}=\mathbf{i}+3 \mathbf{j}-4 \mathbf{k}}
$$

Normal to plane is given by a vector

$$
2 \mathbf{i}+7 \mathbf{j}+5 \mathbf{k} \text { or } \frac{2 \mathbf{i}+7 \mathbf{j}+5 \mathbf{k}}{\sqrt{4+49+25}}=\hat{\mathbf{n}}
$$

Direction of line is given by vector

$$
2 \mathbf{i}-\mathbf{j}-3 \mathbf{k} \text { or } \frac{2 \mathbf{i}-\mathbf{j}-3 \mathbf{k}}{\sqrt{4+1+9}}=\hat{\mathbf{d}}
$$

So by scalar product

$$
\begin{aligned}
\mathbf{n} \cdot \mathbf{d} & =|\mathbf{n}||\mathbf{d}| \cos \theta \\
\text { or } \hat{\mathbf{n}} \cdot \hat{\mathbf{n}} & =\cos \theta
\end{aligned}
$$

\Rightarrow

$$
\begin{aligned}
\cos \theta & =\frac{(2,7,5) \cdot(2,-1,-3)}{\sqrt{4+49+25} \sqrt{4+1+9}} \\
& =\frac{-18}{\sqrt{78} \sqrt{14}} \\
& =-0.544705
\end{aligned}
$$

$$
\Rightarrow \underline{\theta=123.004^{\circ}}\left(\text { or } 180-123.004=56.9955^{\circ}\right)
$$

