Question

Given $\mathbf{u}=(4,2,0)$, $\mathbf{v}=(-3,1,1)$, $\mathbf{w}=(5,1,5)$, $\mathbf{s}=(1,2,1)$ find; (a) the angle between \mathbf{u} and \mathbf{w} ; (b) The value of μ for which for $\mathbf{u}+\mu\mathbf{v}$ is perpendicular to \mathbf{w}

Answer

$$\mathbf{u} = (4, 2, 0) \mathbf{v} = (-3, 1, 1) \mathbf{w} = (5, 1, 5) \mathbf{s} = (1, 2, 1)$$

- (a) $\mathbf{u} \cdot \mathbf{w} = |\mathbf{u}| |\mathbf{w}| \cos \theta$ with θ the angle between \mathbf{u} and \mathbf{w} $\mathbf{u} \cdot \mathbf{w} = (4, 2, 0) \cdot (5, 1, 1) = 20 + 2 + 0 = 22$ $|\mathbf{u}| = \sqrt{4^2 + 2^2 + 0^2} = \sqrt{20}$ $|\mathbf{w}| = \sqrt{5^2 + 1^2 + 1^2} = \sqrt{27}$ Hence $\cos \theta = \frac{22}{\sqrt{540}} \approx 0.946 \Rightarrow \theta \approx 18.79^\circ$
- (b) $(\mathbf{u} + \mu \mathbf{v}) \cdot \mathbf{w} = 0$ for $\mathbf{u} + \mu \mathbf{v}$ perpendicular to \mathbf{w} Hence

$$\mathbf{u} \cdot \mathbf{w} + \mu \mathbf{v} \cdot \mathbf{w} = 0$$

$$\mu = \frac{-\mathbf{u} \cdot \mathbf{w}}{\mathbf{v} \cdot \mathbf{w}}$$

$$= \frac{-22}{(-3 \times 5 + 1 \times 1 + 1 \times 1)}$$

$$= \frac{22}{13}$$