Question

Using the definition of limit, prove that $\lim_{n\to\infty} \frac{1+2\cdot 10^n}{5+3\cdot 10^n} = \frac{2}{3}$. For what value of M do we have that $\left|\frac{1+2\cdot 10^n}{5+3\cdot 10^n} - \frac{2}{3}\right| < 10^{-3}$ for all n > M?

Answer

Set $a_n = \frac{1+2\cdot 10^n}{5+3\cdot 10^n}$ and $L = \frac{2}{3}$. For each choice of $\varepsilon > 0$, we need to show that there exists M so that $|a_n - L| < \varepsilon$ for all n > M.

Calculating, we see that

$$|a_n - L| = \left| \frac{1 + 2 \cdot 10^n}{5 + 3 \cdot 10^n} - \frac{2}{3} \right| = \left| \frac{3 + 6 \cdot 10^n - (10 + 6 \cdot 10^n)}{3(5 + 3 \cdot 10^n)} \right| = \left| \frac{7}{15 + 9 \cdot 10^n} \right|.$$

Hence, for a given value of $\varepsilon > 0$, we want to find M so that $\left| \frac{7}{15+9\cdot 10^n} \right| < \varepsilon$ for n > M. So, we solve for n in terms of ε . First, note that $\frac{7}{15+9\cdot 10^n} > 0$ for all positive integers n. So, we need only solve $\frac{7}{15+9\cdot 10^n} < \varepsilon$ for n.

So, $\frac{7}{\varepsilon} < 15 + 9 \cdot 10^n$, and so $-15 + \frac{7}{\varepsilon} < 9 \cdot 10^n$, and so $-\frac{15}{9} + \frac{7}{9\varepsilon} < 10^n$. Performing a final bit of simplification, we get $\frac{-15\varepsilon + 7}{9\varepsilon} < 10^n$. If the numerator is positive, that is if $\varepsilon < \frac{7}{15}$, we can solve for n by taking \log_{10} of both sides. If on the other hand the numerator is negative, then any positive integer will do. So, set

$$M = \begin{cases} 1 & \text{if } \varepsilon \ge \frac{7}{15}; \\ \log_{10} \left(\frac{-15\varepsilon + 7}{9\varepsilon} \right) & \text{otherwise} \end{cases}$$

To get a specific value of M so that $|a_n - L| < 10^{-3}$ for n > M, we substitute $\varepsilon = 10^{-3}$ into the above equation to get that $n > \log_{10}\left(\frac{-15 \cdot 10^{-3} + 7}{9 \cdot 10^{-3}}\right) \approx 2.8899$. So, we can take M = 3.