Question

Using the definition of limit, prove that $\lim _{n \rightarrow \infty} \frac{1+2 \cdot 10^{n}}{5+3 \cdot 10^{n}}=\frac{2}{3}$. For what value of M do we have that $\left|\frac{1+2 \cdot 10^{n}}{5+3 \cdot 10^{n}}-\frac{2}{3}\right|<10^{-3}$ for all $n>M$?
Answer
Set $a_{n}=\frac{1+2 \cdot 10^{n}}{5+3 \cdot 10^{n}}$ and $L=\frac{2}{3}$. For each choice of $\varepsilon>0$, we need to show that there exists M so that $\left|a_{n}-L\right|<\varepsilon$ for all $n>M$.

Calculating, we see that

$$
\left|a_{n}-L\right|=\left|\frac{1+2 \cdot 10^{n}}{5+3 \cdot 10^{n}}-\frac{2}{3}\right|=\left|\frac{3+6 \cdot 10^{n}-\left(10+6 \cdot 10^{n}\right)}{3\left(5+3 \cdot 10^{n}\right)}\right|=\left|\frac{7}{15+9 \cdot 10^{n}}\right|
$$

Hence, for a given value of $\varepsilon>0$, we want to find M so that $\left|\frac{7}{15+9 \cdot 10^{n}}\right|<\varepsilon$ for $n>M$. So, we solve for n in terms of ε. First, note that $\frac{7}{15+9 \cdot 10^{n}}>0$ for all positive integers n. So, we need only solve $\frac{7}{15+9 \cdot 10^{n}}<\varepsilon$ for n.
So, $\frac{7}{\varepsilon}<15+9 \cdot 10^{n}$, and so $-15+\frac{7}{\varepsilon}<9 \cdot 10^{n}$, and so $-\frac{15}{9}+\frac{7}{9 \varepsilon}<10^{n}$. Performing a final bit of simplification, we get $\frac{-15 \varepsilon+7}{9 \varepsilon}<10^{n}$. If the numerator is positive, that is if $\varepsilon<\frac{7}{15}$, we can solve for n by taking $\log _{10}$ of both sides. If on the other hand the numerator is negative, then any positive integer will do. So, set

$$
M= \begin{cases}1 & \text { if } \varepsilon \geq \frac{7}{15} \\ \log _{10}\left(\frac{-15 \varepsilon+7}{9 \varepsilon}\right) & \text { otherwise }\end{cases}
$$

To get a specific value of M so that $\left|a_{n}-L\right|<10^{-3}$ for $n>M$, we substitute $\varepsilon=10^{-3}$ into the above equation to get that $n>\log _{10}\left(\frac{-15 \cdot 10^{-3}+7}{9 \cdot 10^{-3}}\right) \approx 2.8899$. So, we can take $M=3$.

