Question

A sequence has its n^{th} term given by $u_n = \frac{3n-1}{4n-5}$. Write the 1st, 5th, 10th, 100th, 1000th, 10,000th, and 100,000th term of the sequence in decimal form. Make a **guess** as to the limit of this sequence as $n \to \infty$. Using the definition of limit, verify that the guess you've made is correct.

Answer

•
$$u_1 = \frac{3(1)-1}{4(1)-5} = \frac{2}{-1} = -2;$$

•
$$u_5 = \frac{3(5)-1}{4(5)-5} = \frac{14}{15} \approx 0.9333;$$

•
$$u_{10} = \frac{3(10)-1}{4(10)-5} = \frac{29}{35} \approx 0.8286;$$

•
$$u_{100} = \frac{3(100) - 1}{4(100) - 5} = \frac{299}{395} \approx .7570;$$

•
$$u_{1000} = \frac{3(1000)-1}{4(1000)-5} = \frac{2999}{3995} \approx 0.7507;$$

•
$$u_{10000} = \frac{3(10000) - 1}{4(10000) - 5} = \frac{29999}{39995} \approx 0.7501;$$

•
$$u_{100000} = \frac{3(100000) - 1}{4(100000) - 5} = \frac{299999}{399995} \approx 0.7500;$$

So, it seems that a reasonable guess would be that $L = \lim_{n\to\infty} u_n$ exists and equals $0.75 = \frac{3}{4}$. To verify this, we use the definition: we need to show that for any choice of $\varepsilon > 0$, we can find M so that $|u_n - L| < \varepsilon$ for all n > M.

Calculating, we see that

$$|u_n - L| = \left| \frac{3n - 1}{4n - 5} - \frac{3}{4} \right| = \left| \frac{4(3n - 1) - 3(4n - 5)}{4(4n - 5)} \right| = \left| \frac{11}{4(4n - 5)} \right| = \frac{11}{4(4n - 5)}.$$

(The last equality follows since $u_n - L$ is positive for n > 1.)

To find the value of M so that $|u_n-L|<\varepsilon$ for n>M, we start by solving for n: since $\frac{11}{4(4n-5)}<\varepsilon$, we have that $\frac{11}{4\varepsilon}<4n-5$, and so $\frac{11}{16\varepsilon}+\frac{5}{4}< n$. That is, for a specified value of ε , we can take $M=\frac{11}{16\varepsilon}+\frac{5}{4}=\frac{11+20\varepsilon}{16\varepsilon}$. Then, for any choice of $\varepsilon>0$, we set $M=\frac{11+20\varepsilon}{16\varepsilon}$, and then if we take n>M, working backwards we have that $|u_n-L|<\varepsilon$.