Question

Prove that $\frac{1}{n+1}<\ln (n+1)-\ln (n)<\frac{1}{n}$ for all $n \in \mathbf{N}$.
Now, consider the sequence given by $a_{n}=\left(\sum_{k=1}^{n} \frac{1}{k}\right)-\ln (n)$. Prove that $\left\{a_{n}\right\}$ is a decreasing sequence and that each a_{n} is positive. Conclude that the limit $\gamma=\lim _{n \rightarrow \infty} a_{n}$ exists. [This number γ is known as Euler's constant, and little is known about it. For instance, it is not known whether γ is rational or irrational.]

Answer

We start with the first part of the inequality, that $\frac{1}{n+1}<\ln (n+1)-\ln (n)=$ $\ln \left(\frac{n+1}{n}\right)$. Set $f(x)=\ln \left(\frac{x+1}{x}\right)-\frac{1}{x+1}$ and $b_{n}=f(n)$. We want to show that $f(x)>0$ for all $x \geq 1$. Calculating, we see that $f^{\prime}(x)=-\frac{1}{x(x+1)^{2}}<0$ for all $x>0$. This implies that $f(x)$ is decreasing, and hence that $\left\{b_{n}\right\}$ is a monotonically decreasing sequence. Since $\lim _{n \rightarrow \infty} b_{n}=0$, this yields that $b_{n}>0$ for all n. (Because, if some $b_{M}<0$, then since $\left\{b_{n}\right\}$ is a monotonically decreasing sequence, we would have that $b_{M+k}<b_{M}$ for all $k \geq 0$, and so $\lim _{n \rightarrow \infty} b_{n}$ would then be negative.) Since $b_{n}>0$ for all n, we have that $\ln \left(\frac{n+1}{n}\right)>\frac{1}{n+1}$ for all n, as desired.
To handle the other part of the inequality, consider $c_{n}=\frac{1}{n}-\ln \left(\frac{n+1}{n}\right)$ and set $g(x)=\frac{1}{x}-\ln \left(\frac{x+1}{x}\right)$, so that $c_{n}=g(n)$. Since $g^{\prime}(x)=-\frac{1}{x^{2}(x+1)}$ for all $x>0$, we see that $\left\{c_{n}\right\}$ is monotonically decreasing. Again, since $\lim _{n \rightarrow \infty} c_{n}=0$, we see that $c_{n}>0$ for all n, and hence that $\frac{1}{n}>\ln \left(\frac{n+1}{n}\right)$ for all n, as desired. It remains to show that $\left\{a_{n}\right\}$ is bounded below and monotonically decreasing. Since

$$
\begin{aligned}
a_{n+1}-a_{n} & =\left(\sum_{k=1}^{n+1} \frac{1}{k}\right)-\ln (n+1)-\left(\sum_{k=1}^{n}\right)+\ln (n)=\frac{1}{n+1}-\ln (n+1)+\ln (n) \\
& =\frac{1}{n+1}-\ln \left(\frac{n+1}{n}\right)
\end{aligned}
$$

we see that $a_{n+1}-a_{n}<0$ by the first part of the inequality. That is, $\left\{a_{n}\right\}$ is monotonically decreasing.
Since $\frac{1}{n+1}<\ln \left(\frac{n+1}{n}\right)$ for all n, we have that
$a_{n}=\left(\sum_{k=1}^{n} \frac{1}{k}\right)-\ln (n)=1+\left(\sum_{k=1}^{n-1} \frac{1}{k+1}\right)-\ln (n)>1+\sum_{k=1}^{n-1} \ln \left(\frac{k+1}{k}\right)-\ln (n)=1$,
and so $\left\{a_{n}\right\}$ is bounded below.
Since $\left\{a_{n}\right\}$ is bounded above (since $a_{n}<a_{1}$ for all n, since it is a monotonically decreasing sequence) and bounded below, it is bounded. Since it is also monotonic, we have that $\left\{a_{n}\right\}$ converges.

