## Question

Prove that  $\frac{1}{n+1} < \ln(n+1) - \ln(n) < \frac{1}{n}$  for all  $n \in \mathbb{N}$ .

Now, consider the sequence given by  $a_n = \left(\sum_{k=1}^n \frac{1}{k}\right) - \ln(n)$ . Prove that  $\{a_n\}$  is a decreasing sequence and that each  $a_n$  is positive. Conclude that the limit  $\gamma = \lim_{n \to \infty} a_n$  exists. [This number  $\gamma$  is known as **Euler's constant**, and little is known about it. For instance, it is not known whether  $\gamma$  is rational or irrational.

## Answer

We start with the first part of the inequality, that  $\frac{1}{n+1} < \ln(n+1) - \ln(n) =$  $\ln\left(\frac{n+1}{n}\right)$ . Set  $f(x) = \ln\left(\frac{x+1}{x}\right) - \frac{1}{x+1}$  and  $b_n = f(n)$ . We want to show that f(x) > 0 for all  $x \ge 1$ . Calculating, we see that  $f'(x) = -\frac{1}{x(x+1)^2} < 0$ for all x > 0. This implies that f(x) is decreasing, and hence that  $\{b_n\}$  is a monotonically decreasing sequence. Since  $\lim_{n\to\infty} b_n = 0$ , this yields that  $b_n > 0$  for all n. (Because, if some  $b_M < 0$ , then since  $\{b_n\}$  is a monotonically decreasing sequence, we would have that  $b_{M+k} < b_M$  for all  $k \geq 0$ , and so  $\lim_{n\to\infty} b_n$  would then be negative.) Since  $b_n>0$  for all n, we have that  $\ln\left(\frac{n+1}{n}\right) > \frac{1}{n+1}$  for all n, as desired.

To handle the other part of the inequality, consider  $c_n = \frac{1}{n} - \ln\left(\frac{n+1}{n}\right)$  and set  $g(x) = \frac{1}{x} - \ln\left(\frac{x+1}{x}\right)$ , so that  $c_n = g(n)$ . Since  $g'(x) = -\frac{1}{x^2(x+1)}$  for all x > 0, we see that  $\{c_n\}$  is monotonically decreasing. Again, since  $\lim_{n\to\infty} c_n = 0$ , we see that  $c_n > 0$  for all n, and hence that  $\frac{1}{n} > \ln\left(\frac{n+1}{n}\right)$  for all n, as desired.

It remains to show that  $\{a_n\}$  is bounded below and monotonically decreasing. Since

$$a_{n+1} - a_n = \left(\sum_{k=1}^{n+1} \frac{1}{k}\right) - \ln(n+1) - \left(\sum_{k=1}^{n}\right) + \ln(n) = \frac{1}{n+1} - \ln(n+1) + \ln(n)$$

$$= \frac{1}{n+1} - \ln\left(\frac{n+1}{n}\right),$$
we see that  $a_{n+1} - a_n < 0$  by the first part of the inequality. That is,  $\{a_n\}$  is

monotonically decreasing.

Since  $\frac{1}{n+1} < \ln\left(\frac{n+1}{n}\right)$  for all n, we have that

$$a_n = \left(\sum_{k=1}^n \frac{1}{k}\right) - \ln(n) = 1 + \left(\sum_{k=1}^{n-1} \frac{1}{k+1}\right) - \ln(n) > 1 + \sum_{k=1}^{n-1} \ln\left(\frac{k+1}{k}\right) - \ln(n) = 1,$$

and so  $\{a_n\}$  is bounded below.

Since  $\{a_n\}$  is bounded above (since  $a_n < a_1$  for all n, since it is a monotonically decreasing sequence) and bounded below, it is bounded. Since it is also monotonic, we have that  $\{a_n\}$  converges.