
Question The sequence scavenger hunt: for each of the following se-
quences {an}, do the following:

• Determine whether the sequence converges or diverges;

• if the sequence converges, determine its limit;

• if the sequence diverges, determine whether the sequence converges to
∞ or if the sequence converges to −∞ or neither;

1. an = (n+ 2)1/n;

2. an =
n2+3n+2

6n3+5
;

3. an = (1 + 1
n
)n;

4. an =
sin(n)

3n ;

5. an =
√
2n+ 3−

√
n+ 1;

6. an = cos
(

nπ
4

)

;

7. an = (1 + 1
n
)1/n;

8. an = ln(n);

9. an = en;

10. an =
ln(n)√

n
;

11. an =
(

1− 2
n2

)n
;

12. an =
n3

10n2+1
;

13. an = xn, where x is a constant with |x| < 1;

14. an =
c
np , where c 6= 0 and p > 0 are constants;

15. an =
2n

5n−3
;

16. an =
1−n2

2+3n2 ;

17. an =
n3−n+7
2n3+n2 ;

18. an = 1 +
(

9
10

)n
;

1



19. an = 2−
(

−1
2

)n
;

20. an = 1 + (−1)n;

21. an =
1+(−1)n

n
;

22. an =
1+(−1)n√n
( 3

2)
n ;

23. an =
sin2(n)√

n
;

24. an =
√

2+cos(n)
n

;

25. an = n sin(πn);

26. an = n cos(πn);

27. an = π− sin(n)/n;

28. an = 2cos(πn);

29. an =
ln(2n)
ln(3n)

;

30. an =
ln2(n)
n

;

31. an = n sin
(

1
n

)

;

32. an =
arctan(n)

n
;

33. an =
n3

en/10 ;

34. an =
2n+1
en ;

35. an =
sinh(n)
cosh(n)

;

36. an = (2n+ 5)1/n;

37. an =
(

n−1
n+1

)n
;

38. an = (0.001)−1/n;

39. an = 2(n+1)/n;

40. an =
(

2
n

)3/n
;
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41. an = (−1)n(n2 + 1)1/n;

42. an =
( 2

3)
n

( 1
2)

n
+( 9

10)
n ;

Answer

1. converges: whenever we are evaluating a limit in which the variable
(in this case n) appears in both the base and the exponent, we follow
the same basic procedure. First use the identity x = exp(ln(x)) to
rewrite the term. Here,

an = (n+ 2)1/n = exp

(

ln(n+ 2)

n

)

.

Next, we check to see whether we are dealing with an indeterminate
form. Since the limit limn→∞

ln(n+2)
n

has the indeterminate form ∞
∞ , we

may use l’Hopital’s rule to evaluate

lim
n→∞

ln(n+ 2)

n
= lim

n→∞
1

n+ 2
= 0.

Hence, {an} converges to e0 = 1.

2. converges: there is a standard way of evaluating the limit as n→∞
of a rational function in n (where a rational function is the quotient
of two polynomials). First, locate the highest power of n that appears
in either the numerator or the denominator, and then multiply both
numerator and denominator by its reciprocal. Here, the highest power
of n that appears is n3, and so we calculate

an =
n2 + 3n+ 2

6n3 + 5
=

n2 + 3n+ 2

6n3 + 5
·

1
n3

1
n3

=
1
n
+ 3

n2 +
2
n3

6 + 5
n3

.

We then use several properties of limits: that the limit of a quotient
is the quotient of the limits, that the limit of a sum is the sum of the
limits, and that limn→∞

1
n
= 0. Here,

lim
n→∞ an = lim

n→∞

1
n
+ 3

n2 +
2
n3

6 + 5
n3

=
0

6
= 0.

Hence, {an} converges to 0.
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3. converges: as above, we first rewrite the term using x = exp(ln(x)).
Here,

an =
(

1 +
1

n

)n

= exp
(

n ln
(

1 +
1

n

))

= exp





ln
(

1 + 1
n

)

1
n



 .

We then concentrate on the exponent and check to see whether we are
dealing with an indeterminate form, which in this case we are, since
both limn→∞ ln(1 + 1

n
) and limn→∞

1
n
are equal to 0. Hence, we may

apply l’Hopital’s rule to evaluate

lim
n→∞

ln
(

1 + 1
n

)

1
n

= lim
n→∞

1

1 + 1
n

= 1.

Hence, {an} converges to e1 = e.

4. converges: here we use the squeeze law. Since −1 ≤ sin(n) ≤ 1 for

all n, we have that − 1
3n ≤ sin(n)

3n ≤ 1
3n . Since limn→∞

1
3n = 0, we have

that limn→∞− 1
3n = 0 as well, and so {an} converges to 0.

5. diverges: write

an = (
√
2n+ 3−

√
n+ 1) ·

√
2n+ 3 +

√
n+ 1√

2n+ 3 +
√
n+ 1

=
n+ 2√

2n+ 3 +
√
n+ 1

.

We now massage algebraically, in order to simplify:

n+ 2√
2n+ 3 +

√
n+ 1

≥ n+ 2

2
√
2n+ 3

=
n+ 3

2
+ 1

2

2
√

2(n+ 3
2
)
>

n+ 3
2

2
√

2(n+ 3
2
)
=

1

2
√
2

√

n+
3

2
.

Since limn→∞
√

n+ 3
2
=∞, we see by the comparison test that limn→∞ an =

∞, and so {an} diverges.

6. diverges: for n = 8k, a8k = cos
(

8kπ
4

)

= 1, while for n = 8k + 1,

a8k+1 = cos
(

(8k+1)π
4

)

= 1√
2
. In particular, |a8k − a8k+1| = 1√

2
, and so

the sequence fails the Cauchy criterion, and so diverges.

7. converges: write an =
(

1 + 1
n

)1/n
= exp

(

ln(1+ 1
n)

n

)

. Since limn→∞ ln(1+

1
n
) = 0, we have that limn→∞

ln(1+ 1
n

)

n
= 0 (by the squeeze law for in-

stance, since 0 ≤ ln(1+ 1
n

)

n
≤ ln(1+ 1

n
) for n ≥ 1). Hence, limn→∞ exp

(

ln(1+ 1
n

)

n

)

=

e0 = 1, and so {an} converges to 1.
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8. diverges: given ε > 0, we show that there exists M so that an > ε

for n > M . Since an = ln(n), this becomes ln(n) > ε for n > M .
Exponentiating both sides of ln(n) > ε, we get that n > eε (and vice
versa, that if n > eε, then ln(n) > ε, since ex is an increasing function),
and so we can take M = eε.

9. diverges: very similar to the question just done. Given ε > 0, we
show that there exists M so that an > ε for n > M . Taking logs of
both sides of an = en > ε, we get that n > ln(ε). So, we make take
M = ln(ε).

10. converges: since limn→∞ an has the indeterminate form ∞
∞ (as both

ln(n)→∞ and
√
n→∞ as n→∞), we may apply l’Hopital’s rule to

see that

lim
n→∞

ln(n)√
n

== lim
n→∞

1
n
1

2
√
n

= lim
n→∞

2√
n
= 0.

Hence, {an} converges to 0.

11. converges: as always, we first rewrite each term as

an =
(

1− 2

n2

)n

= exp
(

n ln
(

1− 2

n2

))

= exp





ln
(

1− 2
n2

)

1
n



 .

As n→∞, the exponent reveals itself to have the indeterminate form
0
0
, and so we may evaluate using l’Hopital’s rule:

lim
n→∞

ln
(

1− 2
n2

)

1
n

= lim
n→∞

1
1− 2

n2

· 4
n3

−1
n2

= lim
n→∞

− 4
1− 2

n2

n
= 0.

Hence, {an} converges to e0 = 1.

12. diverges: we could use either l’Hopital’s rule (since the limit has the
indeterminate form ∞

∞) or the standard trick for dealing with limits
of rational functions (multiply numberator and denominator by the
reciprocal of the highest power of n appearing anywhere in the term),
but instead we massage algebraically:

an =
n3

10n2 + 1
>

n3

10n2 + 10n2
=

n

20
.

Since { n
20
} diverges, the comparison test gives that {an} diverges as

well.
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13. converges: it is a reasonable guess that {an = xn} converges to 0,
which by definition means that given ε > 0, there exists M so that
|xn − 0| = |xn| < ε for n > M . For x = 0, this is true, since {xn}
becomes the constant sequence {an = 0}. So, we can assume that
x 6= 0. Taking ln of both sides of |xn| < ε and using that |xn| = |x|n,
we get that n ln(|x|) < ln(ε), and so n >

ln(ε)
ln(|x|) . (The direction of the

inequality changes since |x| < 1 and so ln(|x|) < 0.) Hence, we may

take M = ln(ε)
ln(|x|) . [Then, if n > M = ln(ε)

ln(|x|) , then n ln(|x|) < ln(ε), and

exponentiating we get that |x|n < ε, as desired.)

14. converges: recall that np ≥ n and that n → ∞ as n → ∞, and
so np → ∞ as n → ∞. Hence, { 1

np} converges to 0, and therefore
{an = c

np} converges to c · 0 = 0.

15. converges: using the standard trick for rational functions, write

an =
2n

5n− 3
=

2n

5n− 3
·

1
n
1
n

=
2

5− 3
n

.

As n→∞, 1
n
→ 0 and so {an} converges to 2

5
.

16. converges: using the standard trick for rational functions, write

an =
1− n2

2 + 3n2
=

1− n2

2 + 3n2
·

1
n2

1
n2

=
1
n2 − 1
2
n2 + 3

.

As n→∞, 1
n2 → 0 and so {an} converges to −1

3
.

17. converges: using the standard trick for rational functions, write

an =
n3 − n+ 7

2n3 + n2
=

n3 − n+ 7

2n3 + n2
·

1
n3

1
n3

=
1− 1

n2 +
7
n3

2 + 1
n

.

As n→∞, both 1
n2 → 0 and 1

n
→ 0, and so {an} converges to 1

2
.

18. converges: by a previous part of this exercise, we know that {( 9
10
)n}

converges to 0, since | 9
10
| < 1, and so limn→∞(1+(

9
10
)n) = 1+limn→∞(

9
10
)n =

1.

19. converges: by a previous part of this exercise, we know that {(− 1
2
)n}

converges to 0, since | − 1
2
| < 1, and so limn→∞(2 − (−1

2
)n) = 2 −

limn→∞(−1
2
)n = 2.
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20. diverges: for n even, an = 2, while for n odd, an = 0. In particular,
|an− an+1| = 2 for all n, and so the sequence fails the Cauchy criterion
and hence diverges.

21. converges: note that 0 ≤ 1 + (−1)n ≤ 2 for all n, and so the squeeze
law yields that since limn→∞

2
n
= 0, we have that limn→∞ an = 0.

22. converges: we begin by noting that

0 ≤ 1 + (−1)n√n
(3

2
)n

≤ 2
√
n

(3
2
)n
,

and so we’ll concentrate on evaluating limn→∞
2
√
n

( 3
2
)n and hope to be able

to apply the squeeze law. Since limn→∞
2
√
n

( 3
2
)n has the indeterminate

form ∞
∞ , we may use l’Hopital’s rule to evaluate

lim
n→∞

2
√
n

(3
2
)n

= lim
n→∞

1√
n

ln(3
2
) exp(n ln(3

2
))

= lim
n→∞

1

ln(3
2
)
√
n(3

2
)n

= 0

(where we differentiate ( 3
2
)n by first writing it as exp(n ln( 3

2
))). Hence,

we may use the squeeze law to see that {an} converges to 0.

23. converges: since 0 ≤ sin2(n) ≤ 1 for all n and since 1√
n
→ 0 as n→∞

(since
√
n→∞ as n→∞), the comparison test yields that sin2(n)√

n
→ 0

as n→∞. That is, {an} converges to 0.

24. converges: since 1 ≤
√

2 + cos(n) ≤
√
3 for all n and since 1

n
→ 0 as

n→∞, the squeeze law yields that
√

2+cos(n)
n

→ 0 as n→∞. That is,
{an} converges to 0.

25. converges: since sin(πn) = 0 for all integers n, this sequence is the
constant sequence an = n ·0 = 0 for all n. In particular, {an} converges
to 0.

26. diverges: since cos(πn) = (−1)n, this sequence can be rewritten as
an = (−1)nn. For n ≥ 1, |an+1 − an| ≥ 2, and so the sequences fails
the Cauchy criterion, and so diverges.

27. converges: since −1 ≤ − sin(n) ≤ 1 for all n, we have that − 1
n
≤

− sin(n)
n

≤ 1
n
for all n, and so {− sin(n)

n
} converges to 0. Hence, {an}

converges to π0 = 1.
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28. diverges: for n even, cos(πn) = 1 and for n odd, cos(πn) = −1. In
particular, |an+1 − an| = |21 − 2−1| = 3

2
for all n, and so this sequences

fails the Cauchy criterion, and hence {an} diverges.

29. converges: we could use l’Hopital’s rule, since limn→∞
ln(2n)
ln(3n)

has the
indeterminate form ∞

∞ , but we proceed in a more low tech way. Use
the laws of logarithms and a variant of the standard trick for rational
functions, we rewrite

an =
ln(2n)

ln(3n)
=

ln(2) + ln(n)

ln(3) + ln(n)
=

ln(2) + ln(n)

ln(3) + ln(n)
·

1
ln(n)

1
ln(n)

=
1 + ln(2)

ln(n)

1 + ln(3)
ln(n)

.

Since ln(n) → ∞ as n → ∞, we have that both ln(2)
ln(n)

and ln(3)
ln(n)

go to 0
as n→∞, and so limn→∞ an = 1.

30. converges: since limn→∞
ln2(n)
n

has the indeterminate form ∞
∞ , we can

use l’Hopital’s rule:

lim
n→∞

ln2(n)

n
= lim

n→∞
2 ln(n) 1

n

1
= lim

n→∞
2 ln(n)

n
.

This limit still has the indeterminate form ∞
∞ , and we can apply l’Hopital’s

rule again to get

lim
n→∞

2 ln(n)

n
= lim

n→∞

2
n

1
= 0.

Hence, {an} converges to 0.

31. converges: write

an = n sin
(

1

n

)

=
sin( 1

n
)

1
n

.

Since limn→∞ an has the indeterminate form 0
0
, we can apply l’Hopital’s

rule to get

lim
n→∞

sin
(

1
n

)

1
n

= lim
n→∞

cos
(

1
n

) (

− 1
n2

)

− 1
n2

= lim
n→∞ cos

(

1

n

)

= cos(0) = 1.

Hence, {an} converges to 1. (There is also a geometric argument for
evaluating this limit, that can be found in Adams (p. 116, Theorem
7).)

32. converges: as n → ∞, arctan(n) → π
2
, and so limn→∞

arctan(n)
n

=
0. (This is an application of the squeeze law, since the numerator is
bounded by 0 and π.)
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33. converges: since limn→∞
n3

en/10 has the indeterminate form ∞
∞ , we may

use l’Hopital’s rule:

lim
n→∞

n3

en/10
= lim

n→∞
3n2

1
10
en/10

.

Since this latter limit still has the indeterminate form ∞
∞ , we use l’Hopital’s

rule again:

lim
n→∞

3n2

1
10
en/10

= lim
n→∞

6n
1

100
en/10

.

And as we still have the indeterminate form ∞
∞ , we apply l’Hopital’s

rule yet again:

lim
n→∞

6n
1

100
en/10

= lim
n→∞

6
1

1000
en/10

.

The right hand limit evaluates to 0, and so {an} converges to 0.

34. converges: write

an =
2n + 1

en
=

2n

en
+

1

en
=

2n

en
+
1n

en
=
(

2

e

)n

+
(

1

e

)n

.

Since both 2
e
< 1 and 1

e
< 1, we have that both ( 2

e
)n and (1

e
)n go to

0 as n → ∞, and so their sum goes to 0 as n → ∞. That is, {an}
converges to 0.

35. converges: again there are several possible approaches, including l’Hopital’s
rule, but again we take a low tech approach, and begin by expressing
sinh(n) and cosh(n) in terms of en and e−n, to get

an =
sinh(n)

cosh(n)
=

en − e−n

en + e−n
=

en − e−n

en + e−n
· e
−n

e−n
=

1− e−2n

1 + e−2n
.

Since e−2n = ( 1
e2
)n → 0 as n → ∞, we see that limn→∞ an = 1. That

is, {an} converges to 1.

36. converges: as with all limits in which the variable appears in both
the base and the exponent, we begin by rewriting using the identity
m = exp(ln(m)) to get an = (2n+5)1/n = exp

(

ln(2n+5)
n

)

. We may now

use l’Hopital’s rule to evaluate the limit of the exponent limn→∞
ln(2n+5)

n

(as it has the indeterminate form ∞
∞) to get

lim
n→∞

ln(2n+ 5)

n
= lim

n→∞

2
2n+5

1
= 0.

Therefore, {an} converges to e0 = 1.
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37. converges: as with all limits in which the variable appears in both
the base and the exponent, we begin by rewriting using the identity
m = exp(ln(m)) to get

an =
(

n− 1

n+ 1

)n

=
(

n+ 1− 2

n+ 1

)n

=
(

1− 2

n+ 1

)n

= exp
(

n ln
(

1− 2

n+ 1

))

.

Since the exponent has the indeterminate form 0 · ∞ as n → ∞, we
rewrite it as

n ln
(

1− 2

n+ 1

)

=
ln(1− 2

n+1
)

1
n

,

which as the indeterminate form 0
0
as n→∞. We now apply l’Hopital’s

rule to evaluate

lim
n→∞

ln
(

1− 2
n+1

)

1
n

= lim
n→∞

1
1− 2

n+1

· 2
(n+1)2

− 1
n2

= lim
n→∞

−2n2

(

1− 2
n+1

)

· (n+ 1)2
= −2.

Hence, {an} converges to e−2.

38. converges: since − 1
n
→ 0 as n → ∞, we see that {an} converges to

(0.001)0 = 1.

39. converges: as n → ∞, n+1
n

= 1 + 1
n
→ 1, and so {an} converges to

21 = 2.

40. converges: one way to evaluate this limit is to write an = ( 2
n
)3/n = 23/n

n3/n

and to evaluate the limits of the numerator and denominator separately.
To evaluate limn→∞ 23/n, all we need note is that limn→∞

3
n
= 0, and

so {23/n} converges to 20 = 1.

To evaluate limn→∞ n3/n, we rewrite n3/n as n3/n = exp(ln(n) 3
n
) and use

l’Hopital’s rule to evaluate limn→∞
3 ln(n)
n

(since it has the indeterminate
form ∞

∞). Using l’Hopital’s rule, we get that

lim
n→∞

3 ln(n)

n
= lim

n→∞

3
n

1
= 0,

and so {n3/n} converges to e0 = 1. Therefore,

lim
n→∞

23/n

n3/n
=

limn→∞ 23/n

limn→∞ n3/n
=

1

1
= 1.
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41. diverges: begin by ignoring the (−1)n and worrying about what hap-
pens to the rest of the term. Using the standard trick, massage to get

(n2+1)1/n = exp( ln(n2+1)
n

). Since limn→∞
ln(n2+1)

n
has the indeterminate

form ∞
∞ , we may use l’Hopital’s rule to evaluate

lim
n→∞

ln(n2 + 1)

n
= lim

n→∞

2n
n2+1

1
= 0,

and so

lim
n→∞ exp

(

ln(n2 + 1)

n

)

= e0 = 1.

So, putting the (−1)n back into the picture, we see that {an} fails
the Cauchy criterion: specifically, since {n2+1

n
} converges to 1, for any

ε > 0, there exists M so that
∣

∣

∣

n2+1
n
− 1

∣

∣

∣ < ε for n > M . Choose ε = 1
2
,

and note that for n > M , we get that |an − an+1| > 1, since one of an,
an+1 is within 1

2
of 1 and the other is within 1

2
of −1 (remember the

alternating signs). So, {an} diverges.

42. converges: we perform a bit of algebraic massage: note that

an =

(

2
3

)n

(

1
2

)n
+
(

9
10

)n <

(

2
3

)n

(

9
10

)n =
(

20

27

)n

.

Since
(

20
27

)n → 0 as n → ∞ (since 20
27

< 1), the comparison test yields

that {an} converges to 0 as well.
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