Question The sequence scavenger hunt: for each of the following se-
quences {a,}, do the following:

e Determine whether the sequence converges or diverges;

e if the sequence converges, determine its limit;

e if the sequence diverges, determine whether the sequence converges to
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Answer

1. converges: whenever we are evaluating a limit in which the variable
(in this case n) appears in both the base and the exponent, we follow
the same basic procedure. First use the identity x = exp(In(z)) to
rewrite the term. Here,

an = (n+2)Y" = exp <ln(nn+2)> .

Next, we check to see whether we are dealing with an indeterminate
form. Since the limit lim,,_,~ hl(”TH) has the indeterminate form 2, we

may use I’Hopital’s rule to evaluate

1 2 1
lim In(n +2) = lim -0
Nn—00 n n—oo n, 4+ 2

Hence, {a,} converges to e* = 1.

2. converges: there is a standard way of evaluating the limit as n — oo
of a rational function in n (where a rational function is the quotient
of two polynomials). First, locate the highest power of n that appears
in either the numerator or the denominator, and then multiply both
numerator and denominator by its reciprocal. Here, the highest power
of n that appears is n3, and so we calculate

n?+3n+ 2 n®+ 3n + 2 %_%4—%4—%

T e +5  nP1b 6+ 5

3

:wH

We then use several properties of limits: that the limit of a quotient
is the quotient of the limits, that the limit of a sum is the sum of the
limits, and that lim, .., = = 0. Here,

1 3 2

14842 ¢
lim a, = lim »— "> 1" = ~ =,
n—o0 n—o0 6_|_73 6

Hence, {a,} converges to 0.



. converges: as above, we first rewrite the term using x = exp(In(z)).
Here,

o= (12 = (o (1+2)) e (20 72)).

We then concentrate on the exponent and check to see whether we are
dealing with an indeterminate form, which in this case we are, since
both lim,, . In(1 + %) and limnﬁoo% are equal to 0. Hence, we may
apply I'Hopital’s rule to evaluate

In (1 + %) ) 1

= lim

=1

lim
n—oo

3=

n
Hence, {a,} converges to e! = e.
. converges: here we use the squeeze law. Since —1 < sin(n) < 1 for
SH,;ELH) < 3% Since lim,,_, 3% = 0, we have
= 0 as well, and so {a,} converges to 0.

all n, we have that —Sin <
that lim, . —35

. diverges: write

V2n+3+vn+1 n+2
Von+3+vn+1l Von+3+vVn+1

an=(V2n+3—+vn+1)-

We now massage algebraically, in order to simplify:

n+ 2 n+2 n+3+1 n+3 1

> = > = n—+ —.
V2434 Vil T2V 43 2 an+3) " 220+3)  2V2 2

3

Since lim,,_,o v/ + % = 00, we see by the comparison test that lim,, ., a, =

oo, and so {a,} diverges.

. diverges: for n = 8k, ag, = cos (%{) = 1, while for n = 8k + 1,
agp41 = COS (W) = % In particular, |asy — agri1| = %, and so

the sequence fails the Cauchy criterion, and so diverges.

1/n n 1
. converges: write a, = <1 + l) " exp (@) Since lim,, o, In(1+

n

%) = 0, we have that lim,,_.
n(1+1 .
stance, since 0 < nts) < In(14-1) for n > 1). Hence, lim,, o exp (

1
Ll: w) 0 (by the squeeze law for in-

n n

e’ =1, and so {a,} converges to 1.
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. diverges: given ¢ > 0, we show that there exists M so that a, > ¢

for n > M. Since a,, = In(n), this becomes In(n) > ¢ for n > M.
Exponentiating both sides of In(n) > ¢, we get that n > e° (and vice
versa, that if n > e, then In(n) > ¢, since e” is an increasing function),
and so we can take M = e°.

. diverges: very similar to the question just done. Given ¢ > 0, we

show that there exists M so that a, > ¢ for n > M. Taking logs of
both sides of a, = " > ¢, we get that n > In(¢). So, we make take

M =1In(e).

converges: since lim, .., a, has the indeterminate form (as both
In(n) — oo and y/n — 00 as n — 00), we may apply ’'Hopital’s rule to

see that () )
. In(n - .2
A T T LT e =0

Hence, {a,} converges to 0.

converges: as always, we first rewrite each term as

= (1= 2) = (o (1= 2)) e (20 E)).

As n — 00, the exponent reveals itself to have the indeterminate form

%, and so we may evaluate using I’Hopital’s rule:

3=

Hence, {a,} converges to ¢® = 1.

diverges: we could use either 'Hopital’s rule (since the limit has the
indeterminate form 22) or the standard trick for dealing with limits
of rational functions (multiply numberator and denominator by the
reciprocal of the highest power of n appearing anywhere in the term),

but instead we massage algebraically:

n3 n3 n

0= > = —.
T Iz +1 7 10m2 + 10n2 20

Since {g5} diverges, the comparison test gives that {a,} diverges as
well.



13.

14.

15.

16.

17.

18.
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converges: it is a reasonable guess that {a, = z"} converges to 0,
which by definition means that given ¢ > 0, there exists M so that
|z" — 0] = |2"| < e for n > M. For x = 0, this is true, since {z"}
becomes the constant sequence {a, = 0}. So, we can assume that
x # 0. Taking In of both sides of |2"| < € and using that |z"| = |z|",
we get that nln(|z|) < In(e), and so n > 122?2)\) (The direction of the
inequality changes since |z| < 1 and so In(|z|) < 0.) Hence, we may
take M = ILIEE)D [Then, if n > M = %, then nln(|z|) < In(e), and
exponentiating we get that |z|" < e, as desired.)

converges: recall that n? > n and that n — oo as n — o0, and
so n? — 0o as n — oo. Hence, {5} converges to 0, and therefore
{a, = 5} converges to c¢-0 = 0.

converges: using the standard trick for rational functions, write

_2n_2n
-3 5n—3

Qn

3|3 1=

1 2
Asn — oo, - — 0 and so {a,} converges to Z.
converges: using the standard trick for rational functions, write

1 —n? 1—n?

an:2~|—3n2 T 2132

3M|,_.
|
—

:K\J|H‘§M|H

§w|w
_l’_
w

Asn — 00, 2> — 0 and so {a,} converges to —3.

converges: using the standard trick for rational functions, write

n3—n—|—7_n3—n+7
m3+n2 203 4 n2

1- L+ 5%
2+,

Ay =

3=

As n — oo, both &5 — 0 and £ — 0, and so {a,,} converges to 1.

converges: by a previous part of this exercise, we know that {(55)"}

converges to 0, since | 35| < 1, and s0 limy, oo (14-(55)™) = 1-+1lim, oo (55)"

1.

converges: by a previous part of this exercise, we know that {(—3)"}
converges to 0, since | — 1| < 1, and so lim, (2 — (—=3)") = 2 —



20.

21.

22.

23.

24.

25.

26.

27.

diverges: for n even, a,, = 2, while for n odd, a,, = 0. In particular,
|y, — an+1| = 2 for all n, and so the sequence fails the Cauchy criterion
and hence diverges.

converges: note that 0 < 1+ (—1)" < 2 for all n, and so the squeeze
law yields that since lim,, % = 0, we have that lim,,_ . a, = 0.

converges: we begin by noting that

0< 1+(—31) \/ﬁS 22/57
()" ()"

2/n

G

has the indeterminate

and so we’ll concentrate on evaluating lim,, ., and hope to be able

2yn
(5"
form 22, we may use ’'Hopital’s rule to evaluate

to apply the squeeze law. Since lim,,_ .

1

2 -+ 1
1imﬂ:hm v :lim—)n:O

W (B T e () exp(nIn(3) o (3 vl

(where we differentiate (2)™ by first writing it as exp(nIn(3))). Hence,
we may use the squeeze law to see that {a,} converges to 0.

[NJ[o]

converges: since 0 < sin2(n) < 1 for all n and since ﬁ —0asn — o0

(since \/n — 00 as n — 00), the comparison test yields that Sil:;(ﬁn) =0

as n — oo. That is, {a,} converges to 0.

converges: since 1 < /2 + cos(n) < V3 for all n and since % — 0 as

24-cos(n)
n

n — 00, the squeeze law yields that — 0 as n — oo. That is,

{a,} converges to 0.

converges: since sin(mn) = 0 for all integers n, this sequence is the
constant sequence a, = n-0 = 0 for all n. In particular, {a,} converges
to 0.

diverges: since cos(mn) = (—1)", this sequence can be rewritten as
a, = (—=1)"n. For n > 1, |ap41 — a,| > 2, and so the sequences fails
the Cauchy criterion, and so diverges.

converges: since —1 < —sin(n) < 1 for all n, we have that —% <

——Sinrgn) < % for all n, and so {—%} converges to 0. Hence, {a,}

converges to m° = 1.



28.

29.

30.

31.

32.

diverges: for n even, cos(mn) = 1 and for n odd, cos(mn) = —1. In
particular, |a, 1 — a,| = |28 — 27| = 2 for all n, and so this sequences
fails the Cauchy criterion, and hence {a,} diverges.

converges: we could use I’'Hopital’s rule, since lim,,_ ., }Egzg has the
indeterminate form 22, but we proceed in a more low tech way. Use
the laws of logarithms and a variant of the standard trick for rational

functions, we rewrite

In(2n)  In(2) +1In(n) In(2) + In(n) ﬁ B L+,

T mBn) T @) +ln(n) @) +n(n) L. 14 bO)

Since In(n) — oo as n — oo, we have that both i;l((i)) and G

as n — 0o, and so lim,,_,, a, = 1.

In?(n)

converges: since lim,, .
use ’'Hopital’s rule:
21n(n)

In? 21In(n):
lim n(n) = lim ﬂ = lim .

has the indeterminate form 22, we can

This limit still has the indeterminate form 22, and we can apply I'Hopital’s
rule again to get

21 2
m 20 =0

n—oo n n—oo

Hence, {a,} converges to 0.

converges: write

(1) sin(1)
a, =nsin| — | = .

n

Since lim,,_, a,, has the indeterminate form 2, we can apply 1’'Hopital’s

0?
rule to get

lim Sin1(%> = lim o (%) 1<_#) = lim cos (%) = cos(0) = 1.

n—oo = n—oo —_ n—oo
n n

Hence, {a,} converges to 1. (There is also a geometric argument for
evaluating this limit, that can be found in Adams (p. 116, Theorem
arctan(n)

7).)
converges: as n — 00, arctan(n) — 7, and so lim, .., = =
0. (This is an application of the squeeze law, since the numerator is

bounded by 0 and 7.)



. . 3 . .
33. converges: since lim,, . 7z has the indeterminate form 22, we may
use ’'Hopital’s rule:

i n3 i 3n?
nLHOIO en/10 o nggo 1Len/l()'
0

Since this latter limit still has the indeterminate form 22, we use I'Hopital’s

rule again:

i 3n? i 6n
nhe Len/10 — a8 1 cn/i0°
10 100

>

And as we still have the indeterminate form 22, we apply I'Hopital’s

rule yet again:

I 6n I 6
b L en/10 N _L _en/10°
100 1000

The right hand limit evaluates to 0, and so {a,} converges to 0.

34. converges: write

2"+1 27 1 2n 1" 2\" "
e OO

er er er en en e e

Since both 2 < 1 and ¢+ < 1, we have that both (2)" and ($)" go to
0 as n — oo, and so their sum goes to 0 as n — oo. That is, {a,}
converges to 0.

35. converges: again there are several possible approaches, including I’Hopital’s
rule, but again we take a low tech approach, and begin by expressing
sinh(n) and cosh(n) in terms of e” and e™", to get

sinh(n) e"—e™ e'—e™ e 1—e

"~ cosh(n) en+em T enfen e lfe

Since e~2" = (8%)” — 0 as n — 00, we see that lim,,_,., a, = 1. That

is, {a,} converges to 1.

36. converges: as with all limits in which the variable appears in both
the base and the exponent, we begin by rewriting using the identity
m = exp(In(m)) to get a, = (2n+5)Y/" = exp (W) We may now

In(2n+5)

use ’'Hopital’s rule to evaluate the limit of the exponent lim,, .o, ==

(as it has the indeterminate form %) to get

In(2n + 5 2
hmwzhmwzo‘

n—oo n n—oo

Therefore, {a,} converges to e’ = 1.

9



37. converges: as with all limits in which the variable appears in both
the base and the exponent, we begin by rewriting using the identity
m = exp(In(m)) to get

(1) = () = () = (mm(1-159))
n — e - e — = n — .
R ntl nt1) — P n+1

Since the exponent has the indeterminate form 0 - co as n — oo, we
rewrite it as

2
n+1 L ’

nln (1—
0

o asn — oo. We now apply I'Hopital’s

which as the indeterminate form
rule to evaluate

| 2 _1_% 9,2
JE&% _n‘—>0012_—n_i+1)2 :7}1—{20 (1_ L)Qé(n—i—l)? = -2

n+1

Hence, {a,} converges to e 2.

38. converges: since —% — 0 as n — oo, we see that {a,} converges to

(0.001)° = 1.

39. c?nverges: as n — 0o, "T“ =1+ % — 1, and so {a,} converges to
20 =2,

40. converges: one way to evaluate this limit is to write a,, = (%)3/ "= 72;7;

and to evaluate the limits of the numerator and denominator separately.
To evaluate lim,_ 2%/", all we need note is that limn_,oo% =0, and
so {23/"} converges to 2° = 1.

3/n

To evaluate lim,, .., n*/™, we rewrite n®" as n*/" = exp(In(n)2) and use

31n(n)

I’Hopital’s rule to evaluate lim,, (since it has the indeterminate
form 22). Using ’'Hopital’s rule, we get that

1 3
i S0 _ z =0,

n—oo n n—oo
and so {n*"} converges to ¢ = 1. Therefore,

. 23/m lim, L., 28" 1 .
11m = = - = .
n—cop3/n lim, o n¥m 1

10



41.

42.

diverges: begin by ignoring the (—1)" and worrying about what hap-
pens to the rest of the term. Using the standard trick, massage to get

(n?+1)Yn" = exp(@). Since lim,, w has the indeterminate

form 2, we may use I’'Hopital’s rule to evaluate

1 2 1 2n
lim 7n(n +1) = lim 2L =,
n— 00 n n—oo |
and so (2
1
lim exp <M> = =1.
n—00 n

So, putting the (—1)™ back into the picture, we see that {a,} fails
the Cauchy criterion: specifically, since {#} converges to 1, for any

g > 0, there exists M so that ’# — 1‘ < e forn > M. Choose ¢ = %,

and note that for n > M, we get that |a,, — a,41| > 1, since one of a,,

Upy1 18 within % of 1 and the other is within % of —1 (remember the

alternating signs). So, {a,} diverges.

converges: we perform a bit of algebraic massage: note that

B0 oy
e )

(e
20 20

Since (ﬁ)n — 0 as n — oo (since 5z < 1), the comparison test yields

that {a,} converges to 0 as well.

2

Ay =

11



