Question

Prove that each of the following statements is true, using the definition of limit.

1. if
$$x_n \to -4$$
 as $n \to \infty$, then $\sqrt{|x_n|} \to 2$ as $n \to \infty$;

2. if
$$x_n \to -4$$
 as $n \to \infty$, then $x_n^2 \to 16$ as $n \to \infty$;

3. if
$$x_n \to -4$$
 as $n \to \infty$, then $\frac{x_n}{3} \to -\frac{4}{3}$ as $n \to \infty$;

Answer

In all three of these statements, we start with the same piece of information, namely that $\lim_{n\to\infty} x_n = -4$. That is, for each $\varepsilon > 0$, there exists M (which depends on ε) so that $|x_n - (-4)| = |x_n + 4| < \varepsilon$ for n > M.

1. we need to show that $\lim_{n\to\infty} \sqrt{|x_n|} = 2$, which is phrased mathematically as needing to show that for each $\mu > 0$, there exists P so that $|\sqrt{|x_n|} - 2| < \mu$ for n > P. We start by rewriting $|\sqrt{|x_n|} - 2|$, using the standard trick for handling differences of square roots, namely

$$|\sqrt{|x_n|} - 2| = |\sqrt{|x_n|} - 2| \cdot \frac{|\sqrt{|x_n|} + 2|}{|\sqrt{|x_n|} + 2|} = \frac{||x_n| - 4|}{|\sqrt{|x_n|} + 2|} \le \frac{||x_n| - 4|}{2}.$$

(The last inequality follows from the fact that $|\sqrt{|x_n|} + 2| \ge 2$ for all possible values of x_n .) Since for any $\mu > 0$, there exists M so that $||x_n| - 4| < 2\mu$ (by using the definition of $\lim_{n\to\infty} |x_n| = 4$) for n > M, we have that

$$|\sqrt{|x_n|} - 2| \le \frac{||x_n| - 4|}{2} < \frac{2\mu}{2} = \mu$$

for n > M, and so we are done.

2. we need to show that $\lim_{n\to\infty} x_n^2 = 16$, which is phrased mathematically as needing to show that for each $\mu > 0$, there exists P so that $|x_n^2 - 16| < \mu$ for n > P. We start by rewriting $|x_n^2 - 16|$, using that it is the difference of two squares:

$$|x_n^2 - 16| = |(x_n - 4)(x_n + 4)| = |x_n - 4| |x_n + 4|.$$

Now apply the definition of $\lim_{n\to\infty} x_n = -4$ with $\varepsilon = 1$, so that there exists M so that if n > N, then $|x_n - (-4)| < 1$. In particular, if n > M, then $-5 < x_n < -3$, and so $|x_n| < 5$, and so $|x_n - 4| \le |x_n| + 4 < 9$.

Since $x_n \to -4$ by assumption, we know that for any $\varepsilon > 0$, there is Q so that $|x_n - (-4)| = |x_n + 4| < \frac{1}{9}\varepsilon$ for n > Q. Hence, if $n > P = \max(M, Q)$, then

$$|x_n^2 - 16| = |x_n - 4| |x_n + 4| < 9 \frac{1}{9} \varepsilon = \varepsilon,$$

as desired.

3. we need to show that $\lim_{n\to\infty}\frac{x_n}{3}=-\frac{4}{3}$, which is phrased mathematically as needing to show that for each $\mu>0$, there exists P so that $|\frac{x_n}{3}-(-\frac{4}{3})|=|\frac{x_n}{3}+\frac{4}{3}|<\mu$ for n>P. Note that $|\frac{x_n}{3}-(-\frac{4}{3})|=|\frac{x_n}{3}+\frac{4}{3}=\frac{1}{3}|x_n+4|$. We know from the definition of $\lim_{n\to\infty}x_n=-4$ given above that for any $\mu>0$, there exists M so that $|x_n-(-4)|=|x_n+4|<3\mu$ for n>M. Hence, for n>M, we have that $\frac{1}{3}|x_n+4|<\frac{1}{3}3\mu=\mu$ for n>M, and so we are done.