Question

Prove that each of the following statements is true, using the definition of limit.

1. if $x_{n} \rightarrow-4$ as $n \rightarrow \infty$, then $\sqrt{\left|x_{n}\right|} \rightarrow 2$ as $n \rightarrow \infty$;
2. if $x_{n} \rightarrow-4$ as $n \rightarrow \infty$, then $x_{n}^{2} \rightarrow 16$ as $n \rightarrow \infty$;
3. if $x_{n} \rightarrow-4$ as $n \rightarrow \infty$, then $\frac{x_{n}}{3} \rightarrow-\frac{4}{3}$ as $n \rightarrow \infty$;

Answer

In all three of these statements, we start with the same piece of information, namely that $\lim _{n \rightarrow \infty} x_{n}=-4$. That is, for each $\varepsilon>0$, there exists M (which depends on ε) so that $\left|x_{n}-(-4)\right|=\left|x_{n}+4\right|<\varepsilon$ for $n>M$.

1. we need to show that $\lim _{n \rightarrow \infty} \sqrt{\left|x_{n}\right|}=2$, which is phrased mathematically as needing to show that for each $\mu>0$, there exists P so that $\left|\sqrt{\left|x_{n}\right|}-2\right|<\mu$ for $n>P$. We start by rewriting $\left|\sqrt{\left|x_{n}\right|}-2\right|$, using the standard trick for handling differences of square roots, namely

$$
\left|\sqrt{\left|x_{n}\right|}-2\right|=\left|\sqrt{\left|x_{n}\right|}-2\right| \cdot \frac{\left|\sqrt{\left|x_{n}\right|}+2\right|}{\left|\sqrt{\left|x_{n}\right|}+2\right|}=\frac{\left|\left|x_{n}\right|-4\right|}{\left|\sqrt{\left|x_{n}\right|}+2\right|} \leq \frac{\left|\left|x_{n}\right|-4\right|}{2}
$$

(The last inequality follows from the fact that $\left|\sqrt{\left|x_{n}\right|}+2\right| \geq 2$ for all possible values of x_{n}.) Since for any $\mu>0$, there exists M so that $\left|\left|x_{n}\right|-4\right|<2 \mu$ (by using the definition of $\lim _{n \rightarrow \infty}\left|x_{n}\right|=4$) for $n>M$, we have that

$$
\left|\sqrt{\left|x_{n}\right|}-2\right| \leq \frac{\left|\left|x_{n}\right|-4\right|}{2}<\frac{2 \mu}{2}=\mu
$$

for $n>M$, and so we are done.
2. we need to show that $\lim _{n \rightarrow \infty} x_{n}^{2}=16$, which is phrased mathematically as needing to show that for each $\mu>0$, there exists P so that $\left|x_{n}^{2}-16\right|<$ μ for $n>P$. We start by rewriting $\left|x_{n}^{2}-16\right|$, using that it is the difference of two squares:

$$
\left|x_{n}^{2}-16\right|=\left|\left(x_{n}-4\right)\left(x_{n}+4\right)\right|=\left|x_{n}-4\right|\left|x_{n}+4\right| .
$$

Now apply the definition of $\lim _{n \rightarrow \infty} x_{n}=-4$ with $\varepsilon=1$, so that there exists M so that if $n>N$, then $\left|x_{n}-(-4)\right|<1$. In particular, if $n>M$, then $-5<x_{n}<-3$, and so $\left|x_{n}\right|<5$, and so $\left|x_{n}-4\right| \leq\left|x_{n}\right|+4<9$.

Since $x_{n} \rightarrow-4$ by assumption, we know that for any $\varepsilon>0$, there is Q so that $\left|x_{n}-(-4)\right|=\left|x_{n}+4\right|<\frac{1}{9} \varepsilon$ for $n>Q$. Hence, if $n>P=$ $\max (M, Q)$, then

$$
\left|x_{n}^{2}-16\right|=\left|x_{n}-4\right|\left|x_{n}+4\right|<9 \frac{1}{9} \varepsilon=\varepsilon
$$

as desired.
3. we need to show that $\lim _{n \rightarrow \infty} \frac{x_{n}}{3}=-\frac{4}{3}$, which is phrased mathematically as needing to show that for each $\mu>0$, there exists P so that $\left|\frac{x_{n}}{3}-\left(-\frac{4}{3}\right)\right|=\left|\frac{x_{n}}{3}+\frac{4}{3}\right|<\mu$ for $n>P$. Note that $\left|\frac{x_{n}}{3}-\left(-\frac{4}{3}\right)\right|=\left\lvert\, \frac{x_{n}}{3}+\frac{4}{3}=\right.$ $\frac{1}{3}\left|x_{n}+4\right|$. We know from the definition of $\lim _{n \rightarrow \infty} x_{n}=-4$ given above that for any $\mu>0$, there exists M so that $\left|x_{n}-(-4)\right|=\left|x_{n}+4\right|<3 \mu$ for $n>M$. Hence, for $n>M$, we have that $\frac{1}{3}\left|x_{n}+4\right|<\frac{1}{3} 3 \mu=\mu$ for $n>M$, and so we are done.

