Question

Let $\left\{a_{n}\right\}$ be a sequence converging to a. Show that the following hold:

1. square roots: if $a>0$, then $\left\{\sqrt{a_{n}}\right\}$ converges to \sqrt{a};
2. $\left\{\left|a_{n}\right|\right\}$ converges to $|a|$;
3. if $a=\infty$, then $\left\{\frac{1}{a_{n}}\right\}$ converges to 0 .
4. If $a \neq 0$, then $\left\{(-1)^{n} a_{n}\right\}$ diverges;
5. If $a=0$, then $\left\{(-1)^{n} a_{n}\right\}$ converges to 0 .

Answer

1. since $a>0$, we can apply the definition of $\lim _{n \rightarrow \infty} a_{n}=a$ with $\varepsilon=\frac{1}{2} a$ to see that there exists P so that $a_{n}>0$ for $n>P$ (since the interval of radius $\frac{1}{2} a$ centered at a contains only positive numbers), and so for $n>P, \sqrt{a_{n}}$ makes sense.

We need to get our hands on $\left|\sqrt{a_{n}}-\sqrt{a}\right|$, which we do with our usual trick for handling differences of square roots:

$$
\left|\sqrt{a_{n}}-\sqrt{a}\right|=\left|\sqrt{a_{n}}-\sqrt{a}\right| \frac{\left|\sqrt{a_{n}}+\sqrt{a}\right|}{\left|\sqrt{a_{n}}+\sqrt{a}\right|}=\frac{\left|a_{n}-a\right|}{\sqrt{a_{n}}+\sqrt{a}} .
$$

(Here we're using that both $\sqrt{a_{n}}>0$ and $\sqrt{a}>0$ to say that $\mid \sqrt{a_{n}}+$ $\sqrt{a} \mid=\sqrt{a_{n}}+\sqrt{a}$.) Since $\sqrt{a_{n}}+\sqrt{a}>\sqrt{a}$ for $n>P$, we have that

$$
\left|\sqrt{a_{n}}-\sqrt{a}\right|=\frac{\left|a_{n}-a\right|}{\sqrt{a_{n}}+\sqrt{a}}<\frac{\left|a_{n}-a\right|}{\sqrt{a}}
$$

for $n>P$. Since $\left\{a_{n}\right\}$ converges to a, for every $\varepsilon>0$, we can choose $M>P$ so that $\left|a_{n}-a\right|<\varepsilon \sqrt{a}$ for $n>M$. For this choice of M, we have that

$$
\left|\sqrt{a_{n}}-\sqrt{a}\right|=\frac{\left|a_{n}-a\right|}{\sqrt{a_{n}}+\sqrt{a}}<\frac{\left|a_{n}-a\right|}{\sqrt{a}}<\frac{\varepsilon \sqrt{a}}{\sqrt{a}}=\varepsilon,
$$

and so $\left\{\sqrt{a_{n}}\right\}$ converges to \sqrt{a}.
2. this one, we break into three cases. If $a>0$, then (applying the definition of $\lim _{n \rightarrow \infty} a_{n}=a$ with $\varepsilon=a$) there exists M_{0} so that $a_{n}>0$ for $n>M_{0}$. In this case, we have $\left|a_{n}\right|=a_{n}$ for $n>M_{0}$ and $|a|=a$, and so $\| a_{n}|-|a||=\left|a_{n}-a\right|$. Since there is M_{1} so that $\left|a_{n}-a\right|<\varepsilon$ for
$n>M_{1}$, we have that $\left|\left|a_{n}\right|-|a|\right|<\varepsilon$ for $n>M=\max \left(M_{0}, M_{1}\right)$, and so $\lim _{n \rightarrow \infty}\left|a_{n}\right|=|a|$.

If $a<0$, then (applying the definition of $\lim _{n \rightarrow \infty} a_{n}=a$ with $\varepsilon=|a|$) there exists M_{0} so that $a_{n}<0$ for $n>M_{0}$. In this case, we have $\left|a_{n}\right|=-a_{n}$ for $n>M_{0}$ and $|a|=-a$, and so $\left|\left|a_{n}\right|-|a|\right|=\left|-a_{n}+a\right|=$ $\left|a_{n}-a\right|$. Since there is M_{1} so that $\left|a_{n}-a\right|<\varepsilon$ for $n>M_{1}$, we have that $\left|\left|a_{n}\right|-|a|\right|<\varepsilon$ for $n>M=\max \left(M_{0}, M_{1}\right)$, and so $\lim _{n \rightarrow \infty}\left|a_{n}\right|=|a|$.

If $a=0$, then the definition of $\lim _{n \rightarrow \infty} a_{n}=a$ becomes: for every $\varepsilon>0$, there exists M so that $\left|a_{n}-0\right|=\left|a_{n}\right|<\varepsilon$ for $n>M$. Since $\left|\left|a_{n}\right|\right|=\left|a_{n}\right|$, we have that the definition of $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ is satisfied without any further work.
3. since $\lim _{n \rightarrow \infty} a_{n}=\infty$, for each $\varepsilon>0$, there exists M so that $a_{n}>\varepsilon$ for $n>M$. Inverting both sides, we see that $\frac{1}{a_{n}}<\frac{1}{\varepsilon}$ for $n>M$. So, given $\mu>0$, choose $\varepsilon>0$ so that $\frac{1}{\varepsilon}<\mu$, which can be done by taking ε large enough. Then, there exists M so that $\left|\frac{1}{a_{n}}-0\right|=\frac{1}{a_{n}}<\frac{1}{\varepsilon}<\mu$ for $n>M$, as desired.
4. if $a \neq 0$, consider the definition of $\lim _{n \rightarrow \infty} a_{n}=a$ with $\varepsilon=\frac{1}{2}|a|$: there exists M so that $\left|a_{n}-a\right|<\frac{1}{2}|a|$ for $n>M$. That is, a_{n} lies in the interval centered at a with radius $\frac{1}{2}|a|$, and so $\left|a_{n}\right|>\frac{1}{2}|a|$.

Now consider the sequence $\left\{(-1)^{n} a_{n}\right\}$. For $n>M$ and n even, $(-1)^{n} a_{n}=$ a_{n} lies in the interval centered at a with radius $\frac{1}{2}|a|$. For $n>M$ and n odd, $(-1)^{n} a_{n}=-a_{n}$ lies in the interval centered at $-a$ with radius $\frac{1}{2}|a|$. In particular, we have, regardless of whether n is odd or even, that $\left|(-1)^{n} a_{n}-(-1)^{n+1} a_{n+1}\right|>|a|$ for $n>M$, since $(-1)^{n} a_{n}$ and $(-1)^{n+1} a_{n+1}$ lie on opposite sides of 0 and are both distance at least $\frac{1}{2}|a|$ from the origin. Hence, $\left\{(-1)^{n} a_{n}\right\}$ violates the Cauchy criterion (see Theorem below), and so diverges.
5. if $a=0$, the definition of $\lim _{n \rightarrow \infty} a_{n}=0$ becomes: for every $\varepsilon>0$, there exists M so that $\left|a_{n}-0\right|=\left|a_{n}\right|<\varepsilon$ for $n>M$. However, note that $\left|(-1)^{n} a_{n}-0\right|=\left|a_{n}\right|$ as well, and so the definition of $\lim _{n \rightarrow \infty}(-1)^{n} a_{n}=0$ is satisfied without any further work.
Tests for convergence and divergence of sequences. Let $\left\{a_{n}\right\}$, $\left\{b_{n}\right\}$, and $\left\{c_{n}\right\}$ be sequences.
(a) Comparison test: If $a_{n} \leq b_{n}$ for all n and if $a_{n} \rightarrow \infty$ as $n \rightarrow \infty$, then $b_{n} \rightarrow \infty$ as $n \rightarrow \infty$;
(b) Limit comparison test: If $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$ with $0<L<\infty$, then $\left\{a_{n}\right\}$ converges if and only if $\left\{b_{n}\right\}$ converges.
(c) l'Hopital's rule: l'Hopital's rule: Suppose that f and g are differentiable on the union $I=(a-\varepsilon, a) \cup(a, a+\varepsilon)$ for some $\varepsilon>0$, and that $g^{\prime}(x)$ is non-zero on I. Suppose also that

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0 .
$$

Then,

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)},
$$

provided that the right hand limit either exists or is $\pm \infty$.
(d) Squeeze rule: If $a_{n} \leq b_{n} \leq c_{n}$ for all n and if $\left\{a_{n}\right\}$ and $\left\{c_{n}\right\}$ both converge with $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}$, then $\left\{b_{n}\right\}$ converges with $\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty} c_{n}$.
(e) Cauchy criterion: if $\left\{a_{n}\right\}$ converges, then for every $\varepsilon>0$, there exists M so that $\left|a_{p}-a_{q}\right|<\varepsilon$ for all $p, q>M$.

