
Question

Let {an} be a sequence converging to a. Show that the following hold:

1. square roots: if a > 0, then {√an} converges to
√
a;

2. {|an|} converges to |a|;

3. if a =∞, then { 1

an
} converges to 0.

4. If a 6= 0, then {(−1)nan} diverges;

5. If a = 0, then {(−1)nan} converges to 0.

Answer

1. since a > 0, we can apply the definition of limn→∞ an = a with ε = 1

2
a

to see that there exists P so that an > 0 for n > P (since the interval
of radius 1

2
a centered at a contains only positive numbers), and so for

n > P ,
√
an makes sense.

We need to get our hands on |√an −
√
a|, which we do with our usual

trick for handling differences of square roots:

|√an −
√
a| = |√an −

√
a| |
√
an +

√
a|

|√an +
√
a| =

|an − a|√
an +

√
a
.

(Here we’re using that both
√
an > 0 and

√
a > 0 to say that |√an +√

a| = √an +
√
a.) Since

√
an +

√
a >

√
a for n > P , we have that

|√an −
√
a| = |an − a|√

an +
√
a
<
|an − a|√

a

for n > P . Since {an} converges to a, for every ε > 0, we can choose
M > P so that |an − a| < ε

√
a for n > M . For this choice of M , we

have that

|√an −
√
a| = |an − a|√

an +
√
a
<
|an − a|√

a
<
ε
√
a√
a

= ε,

and so {√an} converges to
√
a.

2. this one, we break into three cases. If a > 0, then (applying the
definition of limn→∞ an = a with ε = a) there exists M0 so that an > 0
for n > M0. In this case, we have |an| = an for n > M0 and |a| = a,
and so ||an| − |a|| = |an − a|. Since there is M1 so that |an − a| < ε for
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n > M1, we have that ||an| − |a|| < ε for n > M = max(M0,M1), and
so limn→∞ |an| = |a|.

If a < 0, then (applying the definition of limn→∞ an = a with ε = |a|)
there exists M0 so that an < 0 for n > M0. In this case, we have
|an| = −an for n > M0 and |a| = −a, and so ||an| − |a|| = | − an + a| =
|an−a|. Since there isM1 so that |an−a| < ε for n > M1, we have that
||an| − |a|| < ε for n > M = max(M0,M1), and so limn→∞ |an| = |a|.

If a = 0, then the definition of limn→∞ an = a becomes: for every
ε > 0, there exists M so that |an − 0| = |an| < ε for n > M . Since
| |an| | = |an|, we have that the definition of limn→∞ |an| = 0 is satisfied
without any further work.

3. since limn→∞ an = ∞, for each ε > 0, there exists M so that an > ε

for n > M . Inverting both sides, we see that 1

an
< 1

ε
for n > M . So,

given µ > 0, choose ε > 0 so that 1

ε
< µ, which can be done by taking

ε large enough. Then, there exists M so that
∣

∣

∣

1

an
− 0

∣

∣

∣ = 1

an
< 1

ε
< µ

for n > M , as desired.

4. if a 6= 0, consider the definition of limn→∞ an = a with ε = 1

2
|a|: there

exists M so that |an − a| < 1

2
|a| for n > M . That is, an lies in the

interval centered at a with radius 1

2
|a|, and so |an| > 1

2
|a|.

Now consider the sequence {(−1)nan}. For n > M and n even, (−1)nan =
an lies in the interval centered at a with radius 1

2
|a|. For n > M and

n odd, (−1)nan = −an lies in the interval centered at −a with radius
1

2
|a|. In particular, we have, regardless of whether n is odd or even,

that |(−1)nan − (−1)n+1an+1| > |a| for n > M , since (−1)nan and
(−1)n+1an+1 lie on opposite sides of 0 and are both distance at least
1

2
|a| from the origin. Hence, {(−1)nan} violates the Cauchy criterion

(see Theorem below), and so diverges.

5. if a = 0, the definition of limn→∞ an = 0 becomes: for every ε > 0, there
exists M so that |an − 0| = |an| < ε for n > M . However, note that
|(−1)nan−0| = |an| as well, and so the definition of limn→∞(−1)nan = 0
is satisfied without any further work.

Tests for convergence and divergence of sequences. Let {an},
{bn}, and {cn} be sequences.

(a) Comparison test: If an ≤ bn for all n and if an →∞ as n→∞,
then bn →∞ as n→∞;
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(b) Limit comparison test: If limn→∞
an

bn
= L with 0 < L < ∞,

then {an} converges if and only if {bn} converges.
(c) l’Hopital’s rule: l’Hopital’s rule: Suppose that f and g are

differentiable on the union I = (a−ε, a)∪(a, a+ε) for some ε > 0,
and that g′(x) is non-zero on I. Suppose also that

lim
x→a

f(x) = lim
x→a

g(x) = 0.

Then,

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
,

provided that the right hand limit either exists or is ±∞.

(d) Squeeze rule: If an ≤ bn ≤ cn for all n and if {an} and {cn}
both converge with limn→∞ an = limn→∞ cn, then {bn} converges
with limn→∞ bn = limn→∞ cn.

(e) Cauchy criterion: if {an} converges, then for every ε > 0, there
exists M so that |ap − aq| < ε for all p, q > M .
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