Question

Prove that if $x_{n} \rightarrow x$ as $n \rightarrow \infty$, then $\frac{x_{1}+\cdots+x_{n}}{n} \rightarrow x$ as $n \rightarrow \infty$.
Answer
Since $\lim _{n \rightarrow \infty} x_{n}=x$, we have that for each $\varepsilon>0$, there exists M so that $\left|x_{n}-x\right|<\frac{1}{3} \varepsilon$ for $n>M$. For any $m>0$ and $n>M$, we now have that

$$
\begin{aligned}
\left|x_{n+1}+\cdots+x_{n+m}-m x\right| & =\left|x_{n+1}-x+\cdots+x_{n+m}-x\right| \\
& \leq\left|x_{n+1}-x\right|+\cdots+\left|x_{n+m}-x\right| \\
& \leq m \frac{1}{3} \varepsilon .
\end{aligned}
$$

Dividing by $n+m$, we obtain that

$$
\left|\frac{1}{n+m}\left(x_{n+1}+\cdots+x_{n+m}\right)-\frac{m}{n+m} x\right| \leq \frac{m}{n+m} \frac{1}{3} \varepsilon<\frac{1}{3} \varepsilon
$$

(since $\frac{m}{n+m}<1$). Viewing n as fixed for the moment, choose m so that both $\left|\frac{m}{n+m} x-x\right|<\frac{1}{3} \varepsilon$ (which we can do since $\lim _{m \rightarrow \infty} \frac{m}{n+m}=1$ for n fixed) and $\frac{1}{n+m}\left|x_{1}+x_{2}+\cdots+x_{n}\right|<\frac{1}{3} \varepsilon$ (which we can do since $x_{1}+x_{2}+\cdots+x_{n}$ is a constant when n is fixed). Then,

$$
\begin{aligned}
& \left|\frac{1}{n+m}\left(x_{1}+\cdots+x_{n+m}\right)-x\right| \\
& \quad=\left|\frac{1}{n+m}\left(x_{1}+\cdots+x_{n}\right)+\frac{1}{n+m}\left(x_{n+1}+\cdots+x_{n+m}\right)-\frac{m}{n+m} x+\frac{m}{n+m} x-x\right| \\
& \quad \leq\left|\frac{1}{n+m}\left(x_{1}+\cdots+x_{n}\right)\right|+\left|\frac{1}{n+m}\left(x_{n+1}+\cdots+x_{n+m}\right)-\frac{m}{n+m} x\right|+\left|\frac{m}{n+m} x-x\right| \\
& \quad \leq \frac{1}{3} \varepsilon+\frac{1}{3} \varepsilon+\frac{1}{3} \varepsilon=\varepsilon
\end{aligned}
$$

for all $m>0$. Since this is true for all $n>M$ and all $m>0$, we have that $\left|\frac{1}{p}\left(x_{1}+\cdots+x_{p}\right)-x\right|<\varepsilon$ for all $p>M$, as desired.

