
Question

Prove that if xn → x as n →∞, then x1+···+xn

n
→ x as n →∞.

Answer

Since limn→∞ xn = x, we have that for each ε > 0, there exists M so that
|xn − x| < 1

3
ε for n > M . For any m > 0 and n > M , we now have that

|xn+1 + · · ·+ xn+m −mx| = |xn+1 − x + · · ·+ xn+m − x|

≤ |xn+1 − x|+ · · ·+ |xn+m − x|

≤ m
1

3
ε.

Dividing by n + m, we obtain that
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< 1). Viewing n as fixed for the moment, choose m so that both
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constant when n is fixed). Then,
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for all m > 0. Since this is true for all n > M and all m > 0, we have that
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∣

∣

∣ < ε for all p > M , as desired.
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