Question

Give five different examples of sequences that are bounded but not convergent.

Answer

1. $\left\{a_{n}=(-1)^{n}\right\}$, bounded above by 1 and bounded below by -1 , hence bounded. This sequence fails the Cauchy criterion, since $\left|a_{n}-a_{n+1}\right|=2$ for all n, and so diverges.
2. $\{\sin (n)\}$, bounded above by 1 and bounded below by -1 , hence bounded. Though it seems fairly clear why this sequence diverges, the actual proof is a bit subtle, and we do not give it here.
3. $\{0,1,0,0,1,0,0,0,1,0,0,0,0,1, \ldots\}$, bounded above by 1 and bounded below by 0 , hence bounded. Arbitrarily far out in the sequence, there are consectutive terms taking the values 0 and 1 , so the sequence fails the Cauchy criterion and hence diverges.
4. $\left\{a_{n}=\right.$ the $\mathrm{n}^{\text {th }}$ digit of $\left.\pi\right\}$, bounded above by 9 and bounded below by 0 , hence bounded. Does not converge, because the only way for a sequence of integers to converge is for it to be eventually constant, that is, constant past some index, which in this case would then imply that π is a repeating decimal, hence a rational number, which it isn't. (In fact, fixing an irrational number x and taking a_{n} to be the $n^{t h}$ digit of the decimal expansion of x gives a sequence that is bounded but not convergent, by the same argument.)
5. $\left\{a_{n}=\right.$ the $\mathrm{n}^{\text {th }}$ digit of the rational number $\left.\frac{1}{7}=. \overline{142857}\right\}$, using the same argument as above (which works for rational numbers, as long as the length of the repeating section in the decimal expansion is longer than one digit).
