Question

Let P be a hyperbolic 11-gon in the Poincaré disc \mathbf{D}, with vertices at the points $\frac{1}{2} \exp \left(\frac{2 \pi}{11} k\right)$ for $0 \leq k \leq 10$. Calculate the hyperbolic length of a side of P.

Answer

$\underline{a=\ln \left(\frac{1+\frac{1}{2}}{1-\frac{1}{2}}\right)=\ln (3)}$
$\cosh (a)=\frac{1}{2}\left(e^{a}+e^{-a}\right)=\frac{1}{2}\left(3+\frac{1}{3}\right)=\frac{5}{3}$
$\cosh (b)=\cosh (a) \cosh (a)-\sinh (a) \sinh (a) \cos \left(\frac{2 \pi}{11}\right)$ (by lcI)
$\cosh (b)=\frac{25}{9}-\frac{16}{9} \cos \left(\frac{2 \pi}{11}\right)=1.2822$
$b=\ln \left(1.2822+\sqrt{(1.2822)^{2}-1}\right)$
$b=0.73465$
Note that the sides of P all have the same length, since rotation by $\frac{2 \pi}{11}$ takes P to P, and so the length of a side of P is $\underline{b=0.73465}$.

